aDipartimento Scienze della Terra e Geoambientali, Università degli Studi “Aldo Moro” Bari, Via E. Orabona, 4, 70125, Bari (Italy); bDipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Cosenza (Italy)
Abstract U-Pb spot ages on detrital zircons from turbidite quartzarenites, quartz-feldspathic and volcaniclastic sandstones of the Tufiti di Tusa (TTF), Numidian Flysch (NF), Bifurto (BF), Gorgoglione (GF) and Serra Palazzo (SPF) formations, exposed in southern Italy, were detected to define their provenance signatures aiming to contribute to reconstructing the complex geodynamic evolution of the southern Apennine chain. The deposition ages of these sandstones range from Priabonian to Rupelian (TTF), Burdigalian p.p. - Early Langhian (NF and BF) and Langhian-Serravallian - Early Tortonian (GF and SPF). The detrital zircon ages in each deposit show different clusters. In TTF, the zircon age clusters are: 610±6 Ma; 390 ±4 Ma; 287±3 Ma; 157±2 Ma; 78±1 Ma and 67±1 Ma; 33±1 Ma. In NF and BF formations, the prevalent zircon ages are clustered at 661±10 Ma, 607±8 Ma and 547±8 Ma. In GF sandstones, the ages of detrital zircons are clustered around 672±28 Ma, 458±9 Ma, 297±8 Ma and 24±1 Ma. The sandstones of SPF contain zircons showing age clusters at 649±10 Ma, 486±7 Ma and 315±5 Ma. Zircons and lithic fragments from TTF display a dominant provenance from Oligocene calc-alkaline effusive products located on western domains of the Mesomediterranean Microplate, and minor detritus from granitoids and metamorphic rocks of Variscan ages. Zircons of NF and BF indicate a provenance of detritus from the African Craton without evidence of Variscan or Alpine signatures. Zircons from GF and SPF show a provenance from both Variscan crystalline basement rocks forming the Alpine chain (Calabria-Peloritani Terranes) and Variscan magmatic and metamorphic rocks unaffected by Alpine tectonics, similar to Sardinia-Corsica (pro-parte) block. In addition, the Oligocene magmatic component dated at 24 Ma in GF sandstones is evidence for the maximum age of sedimentation for these deposits. In light of the recent and preliminary geochronological data acquired, a revised paleogeographic restoration could be inferred for the location of sedimentary basins during the Apennines tectonics. The Rupelian sedimentation age of TTF suggests that the deposition domains of the Numidian sequences and the successive deposits of GF and SPF, were located in a more complex paleogeographic scenario along the orogenic system.
. Detrital zircon ages of Oligocene to Miocene sandstone suites of the southern Apennines foreland region, Italy[J]. Journal of Palaeogeography, 2022, 11(2): 222-237.
. Detrital zircon ages of Oligocene to Miocene sandstone suites of the southern Apennines foreland region, Italy[J]. Journal of Palaeogeography, 2022, 11(2): 222-237.
[1] Abbassi, Anas.2020. Linking the Numidian sand event with the kinematic evolution of the Rif Chain (Morocco). PhD Thesis, p. 219. Roma tre University. [2] Accotto C., Poyatos D. M., Azor A., Talavera C., Evans N. J., Jabaloy-Sánchez A., .. and El Hadi H.2021. Syn-collisional detrital zircon source evolution in the northern Moroccan Variscides,Gondwana Research, 93, 73-88. [3] Amendola U., Perri F., Critelli S., Monaco P., Cirilli S., Trecci T., andRettori R., 2016, Composition and provenance of the Macigno Formation (Late Oligocene-Early Miocene) in the Trasimeno Lake area (Northern Apennines). Marine and Petroleum Geology, v. 69, p. 146-167. [4] Armstrong-Altrin J. S.2020. Detrital zircon U-Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: A new insight on palaeoenvironment.Journal of Palaeogeography, 9(1), 1-27. [5] Armstrong‐Altrin J. S., Ramos‐Vázquez M. A., Hermenegildo‐Ruiz N. Y., andMadhavaraju J.2021. Microtexture and U-Pb geochronology of detrital zircon grains in the Chachalacas beach, Veracruz State, Gulf of Mexico. Geological Journal, 56(5), 2418-2438. [6] Azdimousa A.,Jabaloy-Sánchez, A., Talavera, C., Asebriy, L., González-Lodeiro, F., Evans, N.J. 2019. Detrital zircon U-Pb ages in the Rif Belt (northern Morocco): Paleogeographic implications. Gondwana Research 70, 133-150. https://doi.org/10.1016/j.gr.2018.12.008. [7] Baruffini L.,F. Lottaroli, and S. Torricelli.2002. Integrated high-resolution stratigraphy of the lower Oligocene Tusa Tuffite Formation in the Calabro-Lucano area and Sicily (southern Italy).Rivista Italiana di Paleontologia e Stratigrafia, 108(3), 457-477. [8] Belayouni H.,F. Guerrera,M.M. Martín, and F. Serrano.2012. Stratigraphic update of the Cenozoic Sub-Numidian formations of the Tunisian Tell (North Africa): Tectonic/sedimentary evolution and correlations along the Maghrebian Chain.Journal of African Earth Sciences, 64, 48-64. [9] Belayouni H.,F. Guerrera,M. Martín-Martín, and F. Serrano.2013. Paleogeographic and geodynamic Miocene evolution of the Tunisian Tell (Numidian and Post-Numidian successions): bearing with the Maghrebian chain.International Journal of Earth Sciences, 102(3), 831-855. [10] Bouillin J.P., Durand-Delga M., andOlivier P.1986. Betic-Rifian and Tyrrhenian Arcs: Distinctive features, genesis and development stages, in Wezel, F.C., ed., The origin of Arcs: Amsterdam, Elsevier Publ, p. 281-304. [11] Carbone S.2013. Note illustrative Foglio 523 Rotondella, Carta Geologica d’Italia, 1:50.000. ISPRA. Available online: https://www.isprambiente.gov.it/Media/carg/note_illustrative/523_Rotondella.pdf. [12] Cerone D.,S. Gallicchio,M. Moretti, and R. Tinterri.2017. Vertical facies evolution of the Tufiti di Tusa Formation cropping out in the Lucanian Apennines (Southern Italy).Journal of Mediterranean Earth Sciences, 9, 109-112. [13] Cerone D., Gallicchio S., andPatacci M.2021. Depositional evolution of a tectonically-confined proximal-foredeep deep-marine system: Miocene Serra Palazzo Formation (Southern Apennines, Italy). Geological Journal, 1-19. https://doi.org/10.1002/gj.4233 [14] Critelli S.1993. Sandstone detrital modes in the Paleogene Liguride Complex, accretionary wedge of the southern Apennines (Italy).Journal of Sedimentary Research, 63(3), 464-476. [15] Critelli S.2018. Provenance of Mesozoic to Cenozoic Circum-Mediterranean sandstones in relation to tectonic setting.Earth-Science Reviews, 185, 624-648. [16] Critelli S.,S. Criniti.2021. Sandstone Petrology and Provenance in Fold Thrust Belt and Foreland Basin System. In Sedimentary Petrology - Implications in Petroleum Industry, Intech Open Access Publisher, in press. [DOI: 10.5772/intechopen.96985].Critelli, S., and E. Le Pera. 1994. Detrital modes and Provenance of Miocene sandstones and Modern sands of the Southern Apennines thrust-top basins (Italy). Journal of Sedimentary Research, 64 (4a), 824-835. [17] Critelli S.,E. Le Pera.1995. Tectonic evolution of the Southern Apennines thrust-belt (Italy) as reflected in modal compositions of Cenozoic sandstone.The Journal of Geology, 103, 95-105. [18] Critelli S.,E. Le Pera.1998. Post-Oligocene sediment dispersal systems and unroofing history of the Calabrian Microplate, Italy.International Geology Review, 48, 609-637. [19] Critelli S., De Rosa R., Sonnino M., andG.G. Zuffa.1990. Significato dei depositi vulcanoclastici della Formazione delle Tufiti di Tusa (Miocene inferiore, Lucania meridionale).Bollettino Società Geologica Italiana, 109(4), 743-762. [20] Critelli S., G. Mongelli, F. Perri, A. Martin-Algarra, M. Martin-Martin, V. Perrone, R. Dominici, M. Sonnino,M.N. Zaghloul.2008. Sedimentary Evolution of the Middle Triassic -Lower Jurassic continental redbeds from Western-Central Mediterranean Alpine Chains based on geochemical, mineralogical and petrographical tools.The Journal of Geology, 116, 375-386. [21] Critelli S.,F. Muto,V. Tripodi, and F. Perri.2011. Relationships between lithospheric flexure, thrust tectonics and stratigraphic sequences in foreland setting: the Southern Apennines foreland basin system, Italy. In New Frontiers in Tectonic Research at the Midst of Plate Convergence, ed. Schattner U., Intech Open Access Publisher, 121-170. [22] Critelli S.,F. Muto,F. Perri, and V. Tripodi.2017. Interpreting Provenance Relations from Sandstone Detrital Modes, Southern Italy Foreland Region: stratigraphic record of the Miocene tectonic evolution. Marine and Petroleum Geology, 87, 47-59 [10.1016/j.marpetgeo.2017.01.026]. [23] Critelli S.,M. Martin-Martin, W. Capobianco, and F. Perri. 2020. Sedimentary history and palaeogeography of the Cenozoic clastic wedges of the Malaguide Complex, Internal Betic Cordillera, southern Spain. Marine and Petroleum Geology, 121, https://doi.org/10.1016/j.marpetgeo.2020.104775. [24] de Capoa, P., A. Di Staso, F. Guerrera, V. Perrone,M. Tramontana.2004. The age of the oceanic accretionary wedge and onset of continental collision in the Sicilian Maghrebian Chain.Geodinamica Acta 17 (5): 331-348. [25] de Capoa, P., M. D’Errico, A. Di Staso, S. Morabito, V. Perrone,S. Perrotta.2014. Biostratigraphic and petrographic study of the Oligocene-Lower Miocene successions of the external oceanic units in the Apennines and Sicilian Maghrebides.Revista de la Sociedad Geologica de Espana, 27(1),151-173. [26] D’errico M.,A. Di Staso,A. Fornelli,D. Guida,F. Micheletti,V. Perrone, and G. Raffaelli.2014. The Numidian Flysch: a guide formation for the reconstruction of the paleogeography and tectono-sedimentary evolution of southern Apennines.Bulletin de la Société Géologique de France, 185(5), 343-356. [27] Di Capua A., Barilaro F., andGroppelli G.2021. Volcanism and Volcanogenic Submarine Sedimentation in the Paleogene Foreland Basins of the Alps: Reassessing the Source-to-Sink Systems with an Actualist View.Geosciences, 11(1), 23. [28] Di Capua, A., G. Vezzoli,G. Groppelli.2016. Climatic, tectonic and volcanic controls of sediment supply to an Oligocene Foredeep basin: The Val d’Aveto Formation (Northern Italian Apennines).Sedimentary Geology, 332, 68-84. [29] Fornelli, A. and G. Piccarreta.1997. Mineral and chemical provenance indicators in some early Miocene sandstones of the Southern Apennines (Italy).European Journal of Mineralogy, 9, 433-447. [30] Fornelli A.,S. Gallicchio,G. Mongelli,A. Salvemini,V. Summa,N. Ventrella, and S. Zaza.1992. Areniti a glaucofane nell’Appennino meridionale.Mineralogica et Petrographica Acta, 35, 199-214. [31] Fornelli A.,F. Micheletti,A. Langone, and V. Perrone.2015. First U-Pb detrital zircon ages from Numidian sandstones in Southern Apennines (Italy): Evidences of African provenance.Sedimentary Geology, 320, 19-29. [32] Fornelli A.,S. Gallicchio, and F. Micheletti.2019. U-Pb detrital zircon ages and compositional features of Bifurto quartz-rich sandstones from Southern Apennines (Southern Italy): comparison with Numidian Flysch sandstones to infer source area.Italian Journal of Geosciences, 138(2), 216-230. [33] Fornelli A.,S. Gallicchio,F. Micheletti, and A. Langone.2020a. Preliminary U-Pb Detrital Zircon Ages from Tufiti di Tusa Formation (Lucanian Apennines, Southern Italy): Evidence of Rupelian Volcaniclastic Supply.Minerals, 10, 786-810. [34] Fornelli A.,V. Festa,F. Micheletti,R. Spiess, and F. Tursi.2020b. Building an Orogen: Review of U-Pb Zircon Ages from the Calabria-Peloritani Terrane to Constrain the Timing of the Southern Variscan Belt.Minerals, 10(11), 944. [35] Fornelli A.,S. Gallicchio,F. Micheletti, and A. Langone.2021. U-Pb detrital zircon ages from Gorgoglione Flysch sandstones in Southern Apennines (Italy) as provenance indicators.Geological Magazine, 158(5), 859-874. [36] Fornelli, A. and F. Micheletti.2021. Evaluation of Numidian quartz sandstones from southern Italy for industrial applications. Acta Geodynamica et Geomateralia 18 (4, 204): 473-485, in press, DOI: 10.13168/AGG.2021.0034. [37] Franceschelli, M., Puxeddu, M. and Cruciani, G.2005. Variscan metamorphism in Sardinia, Italy: review and discussion.Journal of the Virtual Explorer, 19, 2-36. [38] Gallicchio, S. and P. Maiorano.1999. Revised stratigraphy of the Serra Palazzo formation, a Miocene foredeep turbidite succession of the Southern Apennines (Italy).Rivista Italiana di Paleontologia e Stratigrafia, 105, 287-302. [39] Garzanti E.2019. Petrographic classification of sand and sandstone.Earth-science reviews, 192, 545-563. [40] Guerrera F., Martín-Algarra A. and Perrone V.1993. Late Oligocene- Miocene syn- late-orogenic successions in Western and Central Mediterranean Chains from Betic Cordillera to Southern Apennine).Terra Nova, 5, 525-544. Guerrera, F. Martín-Algarra, A. and Martín-Martín, M. 2012. Tectono-sedimentary evolution of the “Numidian Succession” and Lateral Facies (southern branch of the western Tethys): constraints for central-western Mediterranean geodynamics. Terra Nova, 24. 34-41. doi: 10.1111/j.1365-3121.2011.01034.x. [41] Guerrera F., M. Martín-Martín and M. Tramontana.2019. Evolutionary geological models of the central-western peri-Mediterranean chains: A review. International Geological Review, 1-22. [42] Jabaloy-Sánchez,A., Talavera, C., Gómez-Pugnaire, M.T., López Sánchez-Vizcaíno, V., Vázquez, M., Rodríguez-Peces, M.J. and Evans N.J. 2018. U-Pb ages of detrital zircons from the Internal Betics: a key to deciphering paleogeographic provenance and tectonostratigraphic evolution. Lithos, 318, 244-266. https://doi.org/10.1016/j.lithos.2018.07.026. [43] Jabaloy-Sánchez A., Talavera C., Rodríguez-Peces M.J., Vázquez-Vilchez M. and Evans N.J.2021. U-Pb geochronology of detrital and igneous zircon grains from the Águilas Arc in the Internal Betics (SE Spain): Implications for Carboniferous-Permian paleogeography of Pangea.Gondwana Research, 90, 135-158. [44] Lu G.,A. Di Capua,W. Winkler,M. Rahn,M. Guillong,A. von Quadt and S.D. Willett.2019. Restoring the source-to-sink relationships in the Paleogene foreland basins in the Central and Southern Alps (Switzerland, Italy, France): A detrital zircon study approach.International Journal of Earth Sciences, 108: 1817-1834. [45] Mattioli M.,M. Lustrino,S. Ronca, and G. Bianchini.2012. Alpine subduction imprint in Apennine volcaniclastic rocks. Geochemical-petrographic constraints and geodynamic implications from Early Oligocene Aveto-Petrignacola Formation (N Italy).Lithos, 134, 201-220. [46] Malferrari D.,A.F. Gualtieri,F. Panini, and C. Fioroni.2020. Oligocene-Miocene volcanism in the Apennines: Discovery and characterization of a baryte and Ba-rich phillipsite bed in the lower part of the Ranzano Formation (Reggio Emilia, Italy).Italian Journal of Geosciences, 139, 287-299. [47] Malusà M.G.,O.A. Anfinson,L.N. Dafov, and D.F. Stockli.2016. Tracking Adria indentation beneath the Alps by detrital zircon U-Pb geochronology: Implications for the Oligocene-Miocene dynamics of the Adriatic microplate.Geology, 44, 155-158. [48] Martín-Martín M.,F. Guerrera, and M. Tramontana.2020. Geodynamic implications of the latest Chattian-Langhian central-western peri-Mediterranean volcano-sedimentary event: a review.The Journal of Geology, 128(1), 29-43. [49] Matano F.,S. Di Nocera,S. Criniti, and S. Critelli.2020. Geology of the epicentral area of the 1980 earthquake (Irpinia, Italy): new stratigraphical, structural and petrological constrains. MDPI Geosciences, 10 (6)-247, 1-33 [doi:10.3390/geosciences10060247]. [50] Patacca, E. and P. Scandone.2007. Geology of the Southern Apennines.Bollettino della Società Geologica Italiana, 7, 75-119. [51] Pavanetto P., Funedda A., Northrup C.J., Schmitz M., Crowley J. and Loi A.2012. Structure and U-Pb zircon geochronology in the Variscan foreland of SW Sardinia, Italy.Geological Journal, 47, 426-45. [52] Perri F., S. Critelli, F. Cavalcante, G. Mongelli., M. Sonnino R. Dominici, and R. De Rosa.2012. Provenance signatures for the Miocene volcaniclastic succession of the Tufiti di Tusa Formation, southern Apennines, Italy.Geological Magazine, 149, 423-442. [53] Perrone V., A. Martin-Algarra, S. Critelli, F.A. Decandia, M. D’errico, A. Estevez, A. Iannace, A. Lazzarotto, M. Martin-Martin, I. Martin-Rojas, S. Mazzoli, A. Messina, G. Mongelli, S. Vitale,N.M. Zaghloul.2006. “Verrucano” and “Pseudoverrucano” in the Central-Western Mediterranean Alpine Chains: paleogeographic evolution and geodynamic significance. Geological Society of London Special Publication 262 (1): 1-43. [54] Pescatore T., P. Renda, M. Schiattarella and M. Tramutoli.1999. Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy.Tectonophysics, 315, 269-286. [55] Sabato L., S. Gallicchio, P. Pieri, G. Salvini and P. Scotti.2007. Cretaceous anoxis events in the argilliti e radiolariti di Campomaggiore unit (Lagonegro-Molise basin, southern Italy). Bollettino della Società Geologica Italiana, Volume speciale 7: 57-74. [56] SGI, 2012. Carta Geologica d’Italia, scala 1:50.000; Foglio 523 “Rotondella”: ISPRA. Available online: https: //www.isprambiente.gov.it/Media/carg/523_ROTONDELLA/Foglio.html. [57] Speranza F.,L. Adamoli,R. Maniscalco, and F. Florindo.2003a. Genesis and evolution of a curved mountain front: Paleomagnetic and geological evidence from the Gran Sasso range (central Apennines, Italy).Tectonophysics, 362, 183-197. [58] Speranza F.,R. Maniscalco, and M. Grasso.2003b. Pattern of orogenic rotations in central-eastern Sicily: Implications for the timing of spreading in the Tyrrhenian Sea.Journal of the Geological Society, 160, 183-195. [59] Vermeesch P.2012. On the visualization of detrital age distributions.Chemical Geology, 312, 190-194.