Microtextures on quartz grains from the Gulf of Mexico and the Mexican Pacific coastal sediments: Implications for sedimentary processes and depositional environment
Jayagopal Madhavarajua,*, John S. Armstrong-Altrinb, Kandasamy Selvarajc, Rathinam Arthur Jamesd
aEstación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Hermosillo, Sonora 83000, México; bUniversidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad de Procesos Oceánicos y Costeros, Ciudad Universitaria, Ciudad de México 04510, México; cDepartment of Geological Oceanography and State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; dDepartment of Marine Science, Bharathidasan University, Tiruchirapalli - 620 024, Tamil Nadu, India
Abstract Microtexture analyes on quartz from coastal sediments of the Gulf of Mexico and the Mexican Pacific Coast reveal 35 and 30 types of microtextures, respectively which grouped into mechanical, mechanical/chemical and chemical categories based on their mode of origin. Microtextures of chemical origin are rarer in the El Carrizal than in the Manzanillo beach sediments of the Mexican Pacific Coast. Microtextures of mechanical origin like straight and curved scratches, pits, broken edges, and V-shaped marks indicate high energy, fluvial to marine depositional environments. The scarcity to absence of chemical features suggest that the energy level was higher at the Mexican Pacific coast than on the Gulf of Mexico coast. V-shaped marks are common in the Gulf of Mexico sediments, whereas they are abundant in the quartz grains from the Mexican Pacific coast. Increased frequency and density of V-shaped marks are produced by exceedingly high wave velocity during storm events or tsunamis. Abundance of V-shaped marks with fresh surfaces of quartz grains from the Mexican Pacific coast indicate an extremely high-energy impact event. Many quartz grains from the El Carrizal beach of the Mexican Pacific coast have abundant closely spaced V-shaped marks with fewer fresh surfaces. Such high frequency of V-shaped marks is mainly linked to grain-to-grain collision, typically associated with high-energy sub-aqueous conditions with a large volume of sedimentary particles in the water column that are produced during a tsunami or storm events. In contrast, many quartz grains from the Gulf of Mexico have large fresh surfaces with moderate percentages of V-shaped marks that might have been produced by high-energy waves with low sediment concentrations during storm events.
. Microtextures on quartz grains from the Gulf of Mexico and the Mexican Pacific coastal sediments: Implications for sedimentary processes and depositional environment[J]. Journal of Palaeogeography, 2022, 11(2): 256-274.
. Microtextures on quartz grains from the Gulf of Mexico and the Mexican Pacific coastal sediments: Implications for sedimentary processes and depositional environment[J]. Journal of Palaeogeography, 2022, 11(2): 256-274.
[1] Armstrong‐Altrin, J.S.2009. Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico.Revista Mexicana de Ciencias Geológica,s 26, 764-782. [2] Armstrong-Altrin J.S.,2020. Detrital zircon U-Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: a new insight on palaeoenvironment.Journal of Palaeogeography 9(4): 28 DOI: https://doi.org/10.1186/s42501-020-00075-9. [3] Armstrong-Altrin J.S.,O. Natalhy-Pineda.2014. Microtextures of detrital sand grains from the Tecolutla, Nautla, and Veracruz beaches, western Gulf of Mexico, Mexico: Implications for depositional environment and palaeoclimate.Arabian Journal of Geosciences, 7, 4321-4333. [4] Armstrong‐Altrin, J. S., Y.I. Lee, J.J. Kasper‐Zubillaga, A. Carranza‐Edwards, D. Garcia, N. Eby,N.L. Cruz‐Ortiz, 2012. Geochemistry of beach sands along the Western Gulf of Mexico, Mexico: Implication for provenance.Chemie der Erde Geochemistry, 72, 345-362. [5] Armstrong-Altrin J.S.,A.V. Botello,S.F. Villanueva,L.A. Soto.2019. Geochemistry of surface sediments from the northwestern Gulf of Mexico: implications for provenance and heavy metal contamination.Geological Quarterly, 63(3), 522-538. [6] Armstrong-Altrin J.S.,M.A. Ramos-Vázquez N.Y. Hermenegildo-Ruiz, and J. Madhavaraju, 2021. Microtexture and U-Pb geochronology of detrital zircon grains in the Chachalacas beach, Veracruz State, Gulf of Mexico.Geological Journal, 56(5), 2418-2438. [7] Ayala-Pérez M.P.,J.S. Armstrong-Altrin, and M.L. Machain-Castillo.2021. Heavy metal contamination and provenance of sediments recovered at the Grijalva River delta, southern Gulf of Mexico. Journal of Earth System Science, 130, 88. https://doi.org/10.1007/s12040-021-01570-w. [8] Barrett P.J.1980. The shape of rock particles, a critical review.Sedimentology, 27, 291-303. [9] Bellanova P., Bahlburg H., Nentwig V., Spiske. M., 2016. Microtextural analysis of quartz grains of tsunami and non-tsunami deposits e a case study from Tirúa (Chile).Sedimentary Geology, 343, 72-84. [10] Bianchette T.A., McCloskey T.A., Liu K., 2016. Re-evaluating the geological evidence for late Holocene marine incursion events along the Guerrero seismic gap on the Pacific coast of Mexico. PLoS One 11, e0161568. https://doi.org/10.1371/journal.pone.0161568. [11] Bocanegra-Ramirez D.M., Li H.C., Vazqueza G.D., Israde-Alcantarac I., James J., Bischoff J.L., 2019. Holocene climate change and sea level oscillations in the pacific coast of Mexico.Quaternary International, 528, 100-108. [12] Boyd R., Dalrymple R., Zaitlin B.A., 1992. Classification of clastic coastal depositional environments.Sedimentary Geology, 80, 139-150. [13] Bregy J.C., Wallace D.J., Minzonib R.T., Cruz V.J., 2018. 2500-year paleotempestological record of intense storms for the northern Gulf of Mexico, United States.Marine Geology, 398, 26-42. [14] Bruzzi C., Prone A., 2000. A method of sedimentological identification of storm and tsunami deposits: exoscopic analysis, preliminary results.Quaternaire, 11, 167-177. [15] Bull P.A.,1981. Environmental reconstruction by electron microcopy.Progress in Physical Geography, 5, 368-397. [16] Campa M.F.,1985. The Mexican Thrust Belt. In: Howell, D.G. (ed), Tectonostratigraphic Terranes of the Circum-Pacific Region. Circum Pacific Council Energy Mineral Resources, Earth Science Series, 1, 299-313. [17] Campa M.F., Coney P.J., 1983. Tectono-stratigraphic terranes and mineral resource distributions in México.Canadian Journal of Earth Science, 20, 1040-1051. [18] Caracciolo L., Tolosana-Delgado R., Le Pera E., Von Eynatten H., Arribas J., Tarquini S., 2012. Influence of granitoid textural parameters on sedimentcomposition: implications for sediment generation.Sedimentary Geology, 280, 93-107. [19] Carranza-Edwards A., Rosales-Hoz L., 1995. Grain-size trends and provenance of southwestern Gulf of Mexico beach sands.Canadian Journal of Earth Sciences, 32, 2009-2014. [20] Carranza-Edwards A., Centeno-García E., Rosales-Hoz L., Cruz R.L., 2001. Provenance of beach gray sands from western México.Journal of South American Earth Sciences, 14, 291-305. [21] Chakroun A., Miskovsky J.C., Zaghbib-Turki D., 2009. Quartz grain surface features in environmental determination of aeolian Quaternary deposits in northeastern Tunisia.Mineralogical Magazine, 73, 607-614. [22] Clark P.U., Mix A.C., 2002. Ice sheets and sea level of the last glacial maximum.Quaternary Science Review ,21, 1-7. [23] Costa P.J.M., Andrade C., Cascalho J., Dawson A.G., Freitas M.C., Paris R., Dawson S., 2015. Onshore tsunami sediment transport mechanisms inferred from heavy mineral assemblages.Holocene, 25, 795-809. [24] Costa P.J.M., Andrade, C., Freitas, M.C., 2014. Assignaturas microtexturais de processos, ambientes e fontes sedimentares. O depósito de tsunami de 1755 na Boca do Rio-um caso de estudo. In: Dinis, P., Gomes, A., Monteiro-Rodrigues, S. (Eds.), Proveniência de Materiais Geológicos: Abordagens Sobre o Quaternário de Portugal. Associação Portuguesa para o Estudo do Quaternário, Coimbra, Portugal ,37-56. [25] Costa, P.J.M, Andrade C., Freitas M., Oliveira M.A., Jouanneau J.-M., Costa A., Jouanneau M., 2009. Preliminary results of exoscopic analysis of quartz grains deposited by a palaeotsunami in Salgados lowland (Algarve, Portugal).Journal of Coastal Research, 56, 39-43. [26] Costa P.J.M., Andrade C., Freitas M., Oliveira M., Lopes V., Dawson A., Moreno J., Fatela F., Jouanneau J.-M., 2012. A tsunami record in the sedimentary archive of the central Algarve coast, Portugal: characterizing sediment, reconstructing sources and inundation paths.Holocene, 22, 899-914. [27] Costa P.J.M., Gelfenbaum G., Dawson A., Selle S.L., Milne F., Cascalho J., Lira C.P., Andrade C., Freitas M., Jaffe B., 2017. The application of microtextural and heavy mineral analysis to discriminate between storm and tsunami deposits. Geological Society of London, Special Publication, 456, 167-190. [28] Damon P.E., Shafiqullah M., Clark K.F., 1981. Age trends of igneous activity in relation to metallogenesis in the Southern Cordillera. In: Dickinson, W.R., Payne, W.D. (Eds.), Relations of Tectonics to Ore Deposits in the Southern Cordillera. Arizona Geological Society Digest, 14, 137-154. [29] Dahanayake K., Kulasena. N., 2008. Recognition of diagnostic criteria for recent and paleo-tsunami sediments from Sri Lanka.Marine Geology, 254, 180-186. [30] Deane S.M.,2010. Quartz grains microtextures and sediment provenance: using scanning electron microscope to characterize tropical highland sediments from Costa Rica and the Dominican Republic. Unpublished M.Sc thesis, University of Tennessee, 122 p. [31] Goff J., McFadgen B.G., Chague-Goff C., 2004. Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand.Marine Geology, 204, 235-250. [32] Helland P.E., Diffendal Jr. R.F., 1993. Probable glacial climatic conditions in source areas during depositions of parts of the Ash Hollow Formation, Ogallala Group (Late Tertiary), of western Nebraska.American Journal of Science, 293, 744-757. [33] Higgs R.,1979. Quartz grain surface features of Mesozoic- Cenozoic sands from the Labrador and Western Greenland continental margins.Journal of Sedimentary Petrology, 49, 599-610. [34] Hossain H.M.Z., Armstrong-Altrin J.S., Jamil A.H.M.N., Rahman M.M., Hernández-Coronado C.J., Ramos-Vázquez M.A., 2020. Microtextures on quartz grains in the Kuakata beach, Bangladesh: Implications for provenance and depositional environment.Arabian Journal of Geosciences, 13(7), 291. [35] Immonen N.,2013. Surface microtextures of ice-rafted quartz grains revealing glacial ice in the Cenozoic Arctic.Palaeogeography Palaeoclimatology Palaeoecology, 374, 293-302. [36] Kasper-Zubillaga J.J., Dickinson W.W., 2001. Discriminating depositional environments of sands from modern source terranes using modal analysis.Sedimentary Geology, 143, 149-167. [37] Kasper‐Zubillaga J.J., Carranza‐Edwards A., Rosales‐Hoz L., 1999. Petrography and geochemistry of Holocene sands in the western Gulf of Mexico: Implications for provenance and tectonic setting.Journal of Sedimentary Research, 69, 1003-1010. [38] Kenig K.,2006. Surface microtextures of quartz grains from Vistulian loesses from selected profiles of Poland and some other countries. Quaternary International 152-153, 118-135. [39] Kalińska-Nartíša E., Nartiša M., 2014. Pleistocene and Holocene Aeolian sediments of different location and geological history: A new insight from rounding and frosting of quartz grains. Quaternary International, 328-329, 311-322. [40] Kalinska-Nartiša E., Stivrins N., Grudzinska I., 2018. Quartz grains reveal sedimentary palaeoenvironment and past storm events: A case study from eastern Baltic.Estuarine, Coastal and Shelf Science, 200, 359-370. [41] Kalinska-Nartisa E., Woronko B., Ning W.X., 2017. Microtextural inheritance on quartz sand grains from Pleistocene periglacial environments of the Mazovian Lowland, Central Poland.Permafrost Periglacial Processes, 28, 741-756. [42] Kortekaas S., Dawson A.G., 2007. Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal.Sedimentary Geology, 200, 208-221. [43] Kragelskii I.V.,1965. Friction and wear. Butterworths, London, 225 p. [44] Krinsley D.H., Donahue J., 1968. Environmental interpretations of sand grain surface textures by electron microscopy.Geological Society of America Bulletin, 79, 743-748. [45] Krinsley D.H., Doornkamp J.C., 1973. Atlas of quartz sand surface textures: Cambridge University Press, Cambridge, 91 p. [46] Krinsley D.H., Doornkamp J.C., 2011. Atlas of quartz sand surface textures: Cambridge University Press, Cambridge, 398 p. [47] Lakshmi C.S.V., Srinivasan P., Murthy S.G.N., Trivedi D., Nair R.R., 2010. Granularity and textural analysis as a proxy for extreme wave events in southeast coast of India.Journal of Earth System Science, 119, 297-305. [48] Lambert K., Chappell J.,2001. Sea level change through the last glacial cycle. Science 292: 679-685. https://doi.org/10.1016/j.crte.2003.12.017. [49] Le Ribault, 1977. L’exoscopie. des quartz. Masson, Paris, 150 p. [50] Lessa G., Masselink G., 2006. Evidence of a mid-Holocene sea level highstand from the sedimentary record of a macrotidal barrier and paleoestuary system in northwestern Australia.Journal of Coastal Research, 22, 100-112. [51] Madhavaraju J., Ramasamy S., 1999. Rare earth elements in limestones of Kallankurichchi Formation of Ariyalur Group, Tiruchirapalli Cretaceous, Tamil Nadu.Journal of the Geological Society of India, 54, 291-301. [52] Madhavaraju J.,Armstrong-Altrin, J.S., Arthur James, R., Hussain, S.M., 2021. Palaeoenvironment and provenance signatures inferred from quartz grain surface features: A case study from Huatabampo and Altata beaches, Gulf of California, Mexico. Journal of South American Earth Sciences 111: 103441. https://doi.org/10.1016/j.jsames.2021.103441. [53] Madhavaraju J., Barragán J.C.G., Hussain S.M., Mohan S.P., 2009. Microtextures on quartz grains in the beach sediments of Puerto Peñasco and Bahia Kino, Gulf of California, Sonora, Mexico.Revista Mexicana de Ciencias Geologicas, 26, 367-379. [54] Madhavaraju J., Ramasamy S., Mohan S.P., Hussain S.M., Gladwin Gnana Asir N., Pitchaimani S.V., 2004. Petrography and surface textures on quartz grains of Nimar Sandstone, Bagh Beds, Madhya Pradesh - Implications for provenance and depositional environment.Journal of the Geological Society of India, 64, 747-762. [55] Madhavaraju J., Lee Y.I., Armstrong-Altrin J.S., Hussain S.M., 2006. Microtextures on detrital quartz grains of upper Maastrichtian-Danian rocks of the Cauvery Basin, Southeastern India: implications for provenance and depositional environments.Geosciences Journal, 10, 23-34. [56] Magaña V., Vazquez, J.L. Perez J.L., Perez J.B., 2003. Impact of El Nino on precipitation in Mexico.Geofisica Internacional, 42, 313-330. [57] Mahaney W.C.,2002. Atlas of sand grain surface textures and applications. Oxford University Press, New York, 237 p. [58] Mahaney W.C., Dohm J.M., 2011. The 2011 Japanese 9.0 magnitude earthquake: test of a kinetic energy wave model using coastal configuration and offshore gradient of Earth and beyond.Sedimentary Geology, 239, 80-96. [59] Mahaney W.C., Kalm V., 2000. Comparative scanning electron microscopy study of oriented till blocks, glacial grains and Devonian sands in Estonia and Latvia.Boreas, 29, 35-51. [60] Mahaney W.C., Stewart A., Kalm V., 2001. Quantification of SEM microtextures useful in sedimentary environmental discrimination.Boreas, 30, 165-171. [61] Mahany W.C., Dirszowsky R.W., Milner M.W., Menzies J., Stewart A., Kalm V., Bezada M., 2004. Quartz microtextures and microtextures owing to deformation of glaciolacustrine sediments in the northern Venezuelan Andes.Journal of Quaternary Science, 19, 23-33. [62] Manickam S., Barbaroux L., 1987. Variations in the surface texture of suspended quartz grains in the Loire river: a SEM study.Sedimentology, 34, 495-510. [63] Margolis S., Kennett J.P., 1971. Cenozoic paleoglacial history of Antarctica recorded in Subantarctic deep-sea cores.American Journal of Science, 271, 1-36. [64] Margolis S., Krinsley D.H., 1974. Processes of formation and environmental occurrence of microfeatures on detrital quartz grains.American Journal of Science, 274, 449-464. [65] Mazzullo J., Sims D., Cunningham D., 1986. The effects of eolian shape sorting and abrasion upon the shapes of fine quartz sand grains.Journal of Sedimentary Petrology, 56, 45-56. [66] Meza-Figueroa D., Valencia-Moreno M., Valencia V.A., Ochoa-Landín L., Pérez-Segura E., Díaz-Salgado C., 2003. Major and trace element geochemistry and 40Ar/39Ar geochronology of Laramide plutonic rocks associated with gold-bearing Fe skarn deposits in Guerrero state, southern Mexico.Journal of South American Earth Sciences, 16, 205-217. [67] Morton R.A., Gelfenbaum G., Jaffe B.F., 2007. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples.Sedimentary Geology, 200, 184-207. [68] Nanayama F., Shigeno, K. Satake, K. Shimokawa, K., Koitabashi S., Miyasaka S., Ishii M., 2000. Sedimentary differences between the 1993 Hokkaido-nanseioki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan.Sedimentary Geology, 135, 255-264. [69] Newsome D., Ladd P., 1999. The use of quartz grain microtextures in the study of the origin of sand terrains in Western Australia.Catena, 35, 1-17. [70] Padilla-Sanchez R.J.,J.F. Aceves-Quesada.1990. Geología, Atlas Nacional de México (Sheet IV.1.1.). Instituto de Geografía. Universidad Nacional Autónoma de México. [71] Rahman M.H., Ahmed F., 1996. Scanning electron microscopy of quartz grain surface textures of the Gondwana sediments, Barapukuria, Dinajpur, Bangladesh.Journal of the Geological Society of India, 47, 207-214. [72] Ramos-Vázquez M.A., Armstrong-Altrin J.S., 2020. Provenance and palaeoenvironmental significance of microtextures in quartz and zircon grains from the Paseo del Mar and Bosque beaches, Gulf of Mexico. Journal of Earth System Science, 129, 225. [73] Ramos-Vázquez M.A., Armstrong-Altrin J.S., 2021. Microtextures on quartz and zircon grain surfaces in the Barra del Tordo and Tesoro beaches, northwestern Gulf of Mexico. Arabian Journal of Geosciences 14, Article no. 949 10.1007/s12517-021-07333-7. [74] Schaaf P.,1990. Isotopen geochemische Untersuchungen an granitoiden Gesteinen eines aktiven Kontinentalrandes: Alter und Herkunft der Tiefengesteinskomplexe an der Pazifikkuste Mexikos zwischen Puerto Vallarta und Acapulco. Ph.D thesis, Ludwig-Maximilians Universitat, Munchen, 202 p. [75] Schaaf P., Moran-Zenteno D., Hernandez-Bernal M., Solis-Pichardo G., Tolson G., Kohler H., 1995. Paleogene continental margin truncation in southwestern Mexico: Geochronological evidence.Tectonics, 14, 1339-1350. [76] Self R.P.,1977. Longshore variation in beach sands Nautla area, Veracruz, Mexico.Journal of Sedimentary Petrology, 47, 1437-1443. [77] Spiske M., Piepenbreier J., Benavente C., Bahlburg. H.2013. Preservation potential of tsunami deposits on arid siliciclastic coast.Earth Science Reviews, 126, 58-73. [78] Switzer A.D., Jones B.G., 2008. Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm?The Holocene, 18, 787-803. [79] Szerakowska S., Woronko B., Sulewska M.J., Eczeretko E., 2018. Spectra method as a tool to examine microtextures of quartz sand-sized grains. Micron, 110, 36-45. [80] Tudor M., Ramos-Pereira A., Costa P.J.M., 2020. A Possible Tsunami Deposit Associated to the CE 1755 Lisbon Earthquake on the Western Coast of Portugal. Geosciences, 10, 257, doi:10.3390/geosciences10070257. [81] Vangla P.,N. Roy,N., and M.L. Gali,M.L.,2018. Image based shape characterization of granular materials and its effect on kinematics of particle motion.Granular Matter, 20, 1-19. [82] Velasco-Tapia F., Verma S.P., 2001. First partial melting inversion model for a rift-related origin of the Sierra de Chichinautzin volcanic field, central Mexican Volcanic Belt.International Geology Review, 43, 788-817. [83] Verma S.P.,2002. Absence of Cocos plate subduction-related basic volcanism in southern Mexico: a unique case on Earth?Geology, 30, 1095-1098. [84] Verma S.P.,2009. Continental rift setting for the central part of the Mexican Volcanic Belt: a statistical approach.Open Journal of Geology, 3, 8-29. [85] Vos K., Vandenberghe N., Elsen J., 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation.Earth Science Reviews, 128, 93-104. [86] Wallace D.J., Woodruff J.D., Anderson J.B., Donnelly. J.P.2014. Palaeohurricane reconstructions from sedimentary archives along the Gulf of Mexico, Caribbean Sea and western North Atlantic Ocean margins. In: Martini, I.P., Wanless, H.R. (Eds.), Sedimentary coastal zones from high to low Latitudes: similarities and differences. Geological Society of London Special Publication, 388, 481-501. [87] Woronko B.,2016. Frost weathering versus glacial grinding in the micromorphology of quartz sand grains: processes and geological implications.Sedimentary Geology 335, 103-119. [88] Woronko B.,M. Pisarska-Jamrozy.2016. Micro-scale frost weathering of sand-sized quartz grains.Permafrost Periglacial Process, 27, 109-122.