aDepartment of Geology and Geophysics, Indian Institute of Technology Kharagpur, West Bengal, India; bDepartment of Applied Geology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, India
Abstract The coastal deposits along the eastern part of the Indian Peninsula are known for the high abundance of heavy minerals. The present study, as discussed here, has been undertaken along the south-western coastal part of Odisha, India, adjoining the charnockite-migmatite zone of the Eastern Ghat Mobile Belt (EGMB). The composition of the placers along the study area is primarily controlled by the detritus from the proximal hinterland rock type(s). The weathering index has been established based on the grain morphology, major element concentration and radioelement ratios. Petrological characteristics and grain morphology of monazite, zircon, ilmenite and rutile have been presented respectively, and their implications are discussed. The provenance study of these coastal placers is based on the abundance of rare earth elements (REE) and radioactive elements in the placer sands and the rock types in the study area. The tectonic implications are based on the major element abundance of the beach sands.
Corresponding Authors:
* ghosalshayantani@gmail.com (S. Ghosal)
Cite this article:
. Provenance studies on the heavy mineral placers along the coastal deposits of Odisha, eastern India[J]. Journal of Palaeogeography, 2022, 11(2): 275-285.
. Provenance studies on the heavy mineral placers along the coastal deposits of Odisha, eastern India[J]. Journal of Palaeogeography, 2022, 11(2): 275-285.
[1] Armstrong-Altrin J.S., Lee Y.I., Kasper-Zubillaga J.J., 2016. Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal Beach Areas, Southern Mexico: Implications for palaeoweathering, provenance and tectonic setting.Geological Journal, 52(4), 559-582. [2] Armstrong-Altrin J.S., Lee Y.I., Kasper-Zubillaga J.J., Carranza-Edwards A., Garcia D., Eby N., Balaram V., Cruz-Ortiz N.L., 2012. Geochemistry of beach sands along the Western Gulf of Mexico, Mexico: Implication for provenance.Chemie der Erde Geochemistry, 72, 345-362. [3] Armstrong-Altrin J.S., Nagarajan R., Lee Y.I., Kasper-Zubillaga J.J., Córdoba-Saldaña L.P., 2014. Geochemistry of sands along the San Nicolás and San Carlos Beaches, Gulf of California, Mexico: Implications for provenance and tectonic setting.Turkish Journal of Earth Sciences, 23, 533-558. [4] Armstrong-Altrin J.S., Verma S.P., 2005. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting.Sedimentary Geology, 177, 115-129. [5] Babu K.,2017. Geochemical characteristics of sandstones from Cretaceous Garudamangalam area of Ariyalur, Tamilnadu, India: Implications of provenance and tectonic setting.Journal of Earth System Science, 126(3), 45. [6] Baranwal V.C., Sharma S.P., Sengupta D., Sandilya M.K., Bhaumik B.K., Guin R., Saha S.K., 2006. A new high background radiation area in the geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa, India.Radiation Measurements, 41(5), 602-610. [7] Behera P.,2003. Heavy minerals in beach sands of Gopalpur and Paradeep along Orissa Coastline, East Coast of India.Indian Journal of Marine Sciences, 32, 172-174. [8] Bhadra S., Das S., Bhattacharya A., 2007. Shear zone-hosted migmatites (Eastern India): the role of dynamic melting in the generation of REE-depleted felsic melts, and implications for disequilibrium melting.Journal of Petrology, 48(3), 435-457. [9] Bhatia M.R.,1983. Plate tectonics and geochemical composition of sandstones.Journal of Geology, 91, 611-627. [10] Bose S., Das K., Torimoto J., Arima M., Dunkley D.J., 2016. Evolution of the Chilka Lake Granulite Complex, Northern Eastern Ghats Belt, India: First evidence of ~780Ma decompression of the deep crust and its implication on the India-Antarctica Correlation.Lithos, 263, 161-189. [11] Bose S., Dasgupta S., 2018. Eastern Ghats Belt, Grenvillian-age tectonics and the evolution of the Greater Indian Landmass: A critical perspective.Journal of the Indian Institute of Science, 98(4), 345-363. [12] Bose S., Dunkley D.J., Dasgupta S., Das K., Arima M., 2011. India-Antarctica-Australia-Laurentia Connection in the Paleo-Mesoproterozoic revisited: Evidence from new zircon U-Pb and monazite chemical age data from the Eastern Ghats Belt, India.Geological Society of America Bulletin, 123, 2031-2049. [13] Condie K., Belousova E., Griffin W.L., Sircombe K.N., 2009. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra.Gondwana Research, 15, 228-242. [14] Cullers R.L.,1994. The chemical signature of source rocks in size fraction of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, USA.Chemical Geology, 113, 327-343. [15] Cullers R.L.,2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies.Lithos, 51, 181-203. [16] Cullers R.L.,2002. Geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies.Lithos, 51, 305-327. [17] Cullers R.L., Basu A., Suttner L.J., 1988. Geochemical signature of provenance in and size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA.Chemical Geology, 70, 335-348. [18] Cullers R.L., Graf J.L., 1984. Chapter 8 - Rare Earth Elements in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks - Ore Petrogenesis. In: Henderson, P. (Ed.). Developments in Geochemistry. Elsevier, Amsterdam, pp. 275-316. [19] Cullers R.L., Podkovyrov V.N., 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling.Precambrian Research, 104, 77-93. [20] Dasgupta S., Bose S., Bhowmik S.K., Sengupta P., 2017. The Eastern Ghats Belt, India, In the Context of Supercontinent Assembly. In: Dasgupta, S., Pant, N.C., (Eds.). Crustal Evolution of India and Antarctica: The Supercontinent Connection. Geological Society of London, Special Publications, 457, pp. 87-104. [21] Dasgupta S., Bose S., Das K., 2013. Tectonic evolution of the Eastern Ghats Belt.Precambrian Research, 227, 247-258. [22] Dasgupta S., Sengupta P., 2003. Indo-Antarctica correlation: A perspective from the Eastern Ghats Belt. In: Yoshida, M., Windley, B.F., Dasgupta, S., (Eds.) Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society of London, Special Publications, 206, 131-143. [23] Dobmeier C.J., Raith M.M., 2003. Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India.Geological Society of London, Special Publications, 206(1), 145-168. [24] El-Kammar A.A., Ragab A.A., Moustafa M.I., 2011. Geochemistry of economic heavy minerals from Rosetta Black Sand of Egypt. Journal of King Abdulaziz University Earth Sciences, 22(2), 69-97. [25] Ghosal S., Agrahari S., Banerjee D., Sengupta D., 2021. Assessment of a naturally occurring high background radiation area with elevated levels of thorium along coastal Odisha, India using radiometric methods.Chemosphere, 281, 131221. [26] Ghosal S., Agrahari S., Banerjee S., Chakrabarti R., Sengupta D., 2020. Geochemistry of the heavy mineral sands from the Garampeta to the Markandi beach, southern coast of Odisha, India: Implications of high contents of REE and Radioelements attributed to Placer Monazite.Journal of Earth System Science, 129(1), 1-12. [27] Ghosal S., Agrahari S., Guin R., Sengupta D., 2017. Implications of modelled radioactivity measurements along coastal Odisha, Eastern India for heavy mineral resources.Estuarine, Coastal and Shelf Science, 184, 83-89. [28] Harley, S.L., Fitzsimons, I.C.W., Zhao, Y., 2013. Antarctica and supercontinent evolution: Historical perspectives, recent advances and unresolved issues. In: Harley, S.L., Fitzsimons, I.C.W., Zhao, Y., (Eds.). Antarctica and Supercontinent Evolution. Geological Society of London, Special Publications, 383, pp. 1-34. [29] Henderson B., Collins A.S., Payne J., Forbes C., Saha D., 2014. Geologically constraining India in Columbia: The age, isotopic provenance and geochemistry of the protoliths of the Ongole Domain, Southern Eastern Ghats, India.Gondwana Research, 26, 888-906. [30] Jagannadha Rao M., Venkata Ramana J., Venugopal R., Chandra Rao M., 2005. Geochemistry and ore-minerology of ilmenite from beach placers of the Visakhapatnam-Bhimunipatnam Deposit, Andhra Pradesh.Journal of the Geological Society of India, 66(2), 147-150. [31] Kasanzu C., Maboko M.A.H., Manya S., 2008. Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering.Precambrian Research, 164, 201-213. [32] Khan R., Ghosal S., Sengupta D., Tamim U., Hossain S.M., Agrahari S., 2019. Studies on heavy mineral placers from eastern coast of Odisha, India by instrumental neutron activation analysis.Journal of Radioanalytical and Nuclear Chemistry, 319(1), 471-484. [33] Kumari K., Gandhi M.S., Vamsi K.S., Das P., Basha U.I., 2020. Characterization of sedimentary environment, provenance and distribution of heavy minerals along the Tamil Nadu shoreline, East Coast of India. Journal of Sedimentary Environments, 5(4), 519-536. [34] Li Z.X., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis.Precambrian Research, 160, 179-210. [35] Liu X., Zhao Y., Song B., Liu J., Cui J., 2009. SHRIMP U-Pb zircon geochronology of highgrade rocks and charnockites from the Eastern Amery Ice Shelf and Southwestern Prydz Bay, East Antarctica: Constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly.Gondwana Research, 16, 342-361. [36] Madhavaraju J., Armstrong-Altrin J.S., Pillai R.B., Pi-Puig T., 2021. Geochemistry of sands from the Huatabampo and Altata beaches, Gulf of California, Mexico.Geological Journal, 56, 2398-2418. [37] Madhavaraju J., Pacheco-Olivas S.A., Gonzalez-Leon C.M., Espinoza-Maldonado I.G., Sanchez-Medrano, P.A, Villanueva-Amadoz U., Monreal R., Pi-Puig T., Ramirez-Montoya E., Grijalva-Noriega F.J., 2017. Clay mineralogy and geochemistry of the Lower Cretaceous siliciclastic rocks of the Morita Formation, Sierra San José section, Sonora, Mexico.Journal of South American Earth Sciences, 76, 397-411. [38] Madhavaraju J., Tom M., Lee Y.I., Balaram V., Ramasamy S., Carranza-Edwards A., Ramachandran A., 2016. Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, Mexico.Journal of South American Earth Sciences, 71, 262-275. [39] McLennan S.M., Nance W.B., Taylor S.R., 1980. Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust.Geochimica et Cosmochimica Acta, 44, 1833-1839. [40] McLennan S.M., Taylor S.R., 1991. Sedimentary rocks and crustal evolution, tectonic setting and secular trends.Journal of Geology, 99, 1-21. [41] Mohanty A.K., Sengupta D., Das S.K., Saha S.K., Van K.V., 2004. Natural radioactivity and radiation exposure in the high background area at Chhatrapur Beach Placer Deposit of Orissa, India.Journal of Environmental Radioactivity, 75, 15-33. [42] Morrissey L.J., Hand M., Kelsey D.E., 2015. Multi-stage metamorphism in the Rayner-Eastern Ghats Terrane: P-T-t constraints from the Northern Prince Charles Mountains, East Antarctica.Precambrian Research, 267, 137-163. [43] Naganjaneyulu K., Santosh M., 2012. The nature and thickness of lithosphere beneath the Archean Dharwar Craton, Southern India: A magnetotelluric model.Journal of Asian Earth Sciences, 49, 349-361. [44] Nagarajan R., Armstrong-Altrin J.S., Kessler F.L., Hidalgo-Moral E.L., DodgeWan D., Taib N.I., 2015. Provenance and tectonic setting of Miocene Siliciclastic Sediments, Sibuti Formation, Northwestern Borneo.Arabian Journal of Geoscience, 8, 8549-8565. [45] Nagarajan R., Armstrong-Altrin J.S., Nagendra R., Madhavaraju J., Moutte J., 2007. Petrography and geochemistry of terrigenous sedimentary rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, Southern India: Implications for paleoweathering conditions, provenance and source rock composition. Journal of the Geological Society of India, 70(2), 297. [46] Nesbitt H.W., Young G.M., 1982. Early Proterozoic climate and plate motions inferred from major element chemistry of Lutites.Nature, 299, 715-717. [47] Nesbitt H.W., Young G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations.Geochemica et Cosmochimica Acta, 48, 1523-1534. [48] Ramakrishnan M., Nanda J.K., Augustine P.F., 1998. Geological evolution of the Proterozoic Eastern Ghats Mobile Belt.Geological Survey of India Special Publication, 44, 1-21. [49] Ramirez-Montoya E., Madhavaraju J., Monreal R., 2021. Geochemistry of the sedimentary rocks from the Antimonio and Río Asunción formations, Sonora, Mexico: Implications for weathering, provenance and chemostratigraphy.Journal of South American Earth Sciences, 106, 103035. [50] Rao N.S., Sengupta D., Guin R., Saha S.K., 2009. Natural radioactivity measurements in beach sand along Southern Coast of Orissa.Environmental Earth Sciences, 59(3), 593-601. [51] Rao P.G., Reddy K.S.N., Sekhar C.R., Naidu K.B., Krishna K.M., Reddy G.V.R., 2019. Provenance studies of ilmenite from Red Sediments, Bhimunipatnam Coast, East Coast of India. Journal of the Geological Society of India, 93(1), 101-108. [52] Rickers K., Mezger K., Raith M.M., 2001. Evolution of the continental crust in the Proterozoic Eastern Ghats Belt, India and new constraints for Rodinia reconstruction: Implications from Sm-Nd, Rb-Sr and Pb-Pb isotopes.Precambrian Research, 112, 183-212. [53] Rudnick R.L., Gao S., 2003. The composition of the continental crust. In: Holland, H.D., Turekian, K.K., (Eds.). Treatise on Geochemistry, 3, The Crust. Elsevier-Pergamon, Oxford, pp. 1-64. [54] Sengupta P., Sen J., Dasgupta S., Raith M., Bhui U.K., Erie J., 1999. Ultra-high temperature metamorphism of metapelitic granulites from Kondapalle, Eastern Ghats Belt: Implications for the Indo-Antarctic correlation.Journal of Petrology, 40, 1065-1087. [55] Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Blackwell, Oxford, UK, 312 pp. [56] UNSCEAR, 2000. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. New York. [57] Verma S.P., Armstrong-Altrin J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastics sediments and their application to Precambrian basins.Chemical Geology, 355, 117-133. [58] Weltje G.J., von Eynatten H., 2004. Quantitative provenance analysis of sediments: Review and outlook.Sedimentary Geology, 171(1-4), 1-11. [59] Zaid S.M., Gahtani F.A., 2014. Provenance, diagenesis, tectonic setting and geochemistry of Hawkesbury Sandstone (Middle Triassic), Southern Sydney Basin, Australia.Turkish Journal of Earth Sciences, 24, 72-98. [60] Zhao G., Cawood P.A., Wilde S.A., Sun M., 2002, Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent.Earth-Science Reviews, 59, 125-162. [61] Zhao G., Sun M., Wilde S.A., Li S., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup.Earth-Science Reviews, 67, 91-123.