Abstract Under the complex influences including the monsoonal climates and tropical hydrological cycle, the features and forcing mechanisms of precipitation changes in the tropical monsoon regions remain controversial. The northern coast of the South China Sea (NCSCS), connecting the South China Sea (SCS) and the Pearl River Estuary (PRE), is a critical area providing reliable tropical precipitation records and probing the possible forcing mechanism of tropical precipitation, benefitted from its high deposition rate and hydroclimatic sensitivity. Here, δ18O variations of planktonic (δ18OG. ruber) and benthic foraminifera (δ18OC. lobatulus) were investigated respectively to reconstruct a high-resolution low-latitude precipitation record from the core 17NH-NC3 in the NCSCS. The results show a distinct δ18O difference between δ18OG. ruber and δ18OC. lobatulus, not only with respect to values, but also with respect to trends in some time intervals. The clear difference between the planktonic and benthic foraminifera (Δδ18Ob-p) illustrates the significant vertical salinity stratification. And the temporal trend of Δδ18Ob-p indicates the degree of salinity stratification variated since the mid-Holocene. We assume that the degree of stratification in the NCSCS was mainly controlled by tropical precipitation changes. Thus, the trend of Δδ18Ob-p values could indicate the temporal change of the tropical precipitation. The precipitation record of our research area is closely related to the tropical atmosphere-ocean dynamics stimulated by sea surface temperature (SST) changes of the tropical Pacific zone, analogous to the El Niño-Southern Oscillation (ENSO) events. During the mid-Holocene (from 8260 to 5180 cal yr B.P.), the sustainable higher Δδ18Ob-p values (> 1.23‰) suggested a large amount of precipitation, pointing to a sustained state of La Niña-like, which is associated with lasted higher difference between Western SST and Eastern SST (W-E SST gradient) in the equatorial Pacific. Since 5180 cal yr B.P., the decreasing Δδ18Ob-p indicates less low-latitude precipitation, which can be ascribed to an El Niño-like mean state arising from decreased W-E SST gradient. Our study provides a new continuous high-resolution archive of low-latitude precipitation in the tropical monsoon region since 8260 cal yr B.P. And this record highlights that the thermal state of the tropical Pacific most likely adjusted the low-latitude precipitation since the mid-Holocene.
Corresponding Authors:
* ; ** Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-Sen University, Zhuhai 519082, Guangdong Province, China. E-mail addresses: eesyxq@mail.sysu.edu.cn (X.-Q. Yang), yinjian8@mail.sysu.edu.cn (J. Yin).
Cite this article:
. Hydroclimate changes related to thermal state of the tropical Pacific in the northern coast of the South China Sea since ~8000 cal yr B.P.[J]. Journal of Palaeogeography, 2022, 11(3): 410-426.
. Hydroclimate changes related to thermal state of the tropical Pacific in the northern coast of the South China Sea since ~8000 cal yr B.P.[J]. Journal of Palaeogeography, 2022, 11(3): 410-426.
[1] Abreu J.A., Beer J., Ferriz-Mas, A., 2010. Past and future solar activity from cosmogenic radionuclides. In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (Eds.), SOHO-23: Understanding a Peculiar Solar Minimum. Astronomical Society of the Pacific Conference Series, vol. 428, pp. 287-295. [2] Berger A., Loutre M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4), 297-317. https://doi.org/10.1016/0277-3791(91)90033-Q. [3] Bradley S.L., Milne G.A., Horton B.P., Zong Y.Q.,2016. Modelling sea level data from China and Malay-Thailand to estimate Holocene ice-volume equivalent sea level change. Quaternary Science Reviews, 137, 54-68. https://doi.org/10.1016/j.quascirev.2016.02.002. [4] Cai Y.J., Fung I.Y., Edwards R.L., An Z.S., Cheng H., Lee J.E., Tan L.C., Sheng C.C., Wang X.F., Day J.A., Zhou W.J., Kelly M.J., Chiang J.C.H., 2015. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proceedings of the National Academy of Sciences of the United States of America, 112(10), 2954-2959. https://doi.org/10.1073/pnas.1424035112. [5] Cai Z.Y., Tian L.D., Bowen G.J.,2017. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region. Earth and Planetary Science Letters, 475, 25-33. https://doi.org/10.1016/j.epsl.2017.06.035. [6] Chen H.X., Wang J.H., Khan N.S., Waxi L., Wu J.X., Zhai Y.H., Zhang Y.B., Horton B.P.,2019. Early and late Holocene paleoenvironmental reconstruction of the Pearl River estuary, South China Sea using foraminiferal assemblages and stable carbon isotopes. Estuarine, Coastal and Shelf Science, 222, 112-125. https://doi.org/10.1016/j.ecss.2019.04.002. [7] Chen Z.Q., Li Y., Pan J.M.,2004. Distributions of colored dissolved organic matter and dissolved organic carbon in the Pearl River Estuary, China. Continental Shelf Research, 24(16), 1845-1856. https://doi.org/10.1016/j.csr.2004.06.011. [8] Chen Z.Y., Gong W.P., Cai H.Y., Chen Y.Z., Zhang H.,2017. Dispersal of the Pearl River plume over continental shelf in summer. Estuarine, Coastal and Shelf Science, 194, 252-262. https://doi.org/10.1016/j.ecss.2017.06.025. [9] Clement A.C., Seager R., Cane M.A., 2000. Suppression of El Niño during the Mid-Holocene by changes in the Earth's orbit. Paleoceanography 15(6), 731-737. https://doi.org/10.1029/1999PA000466. [10] Dai M.H., Zhai W.D., Cai W.J., Callahan J., Huang B.Q., Shang S.L., Huang T., Li X.L., Lu Z.M., Chen W.F., Chen Z.Z.,2008. Effects of an estuarine plume-associated bloom on the carbonate system in the lower reaches of the Pearl River estuary and the coastal zone of the northern South China Sea. Continental Shelf Research, 28(12), 1416-1423. https://doi.org/10.1016/j.csr.2007.04.018. [11] Dong L.X., Su J.L.,Ah Wong, L., Cao, Z.Y., Chen, J.-C., 2004. Seasonal variation and dynamics of the Pearl River plume. Continental Shelf Research, 24(16), 1761-1777. https://doi.org/10.1016/j.csr.2004.06.006. [12] Dykoski C.A., Edwards R.L., Cheng H., Yuan D.X., Cai Y.J., Zhang M.L., Lin Y.S., Qing J.M., An Z.S., Revenaugh J.,2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1-2), 71-86. https://doi.org/10.1016/j.epsl.2005.01.036. [13] Fleitmann D., Burns S.J., Mangini A., Mudelsee M., Kramers J., Villa I., Neff U.,Al-Subbary, A.A., Buettner, A., Hippler, D., Matter, A., 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews, 26(1), 170-188. https://doi.org/10.1016/j.quascirev.2006.04.012. [14] Gao Y., Wang H.J., 2012. Pan-Asian monsoon and its definition, principal modes of precipitation, and variability features. Science China Earth Sciences, 55(5), 787-795. https://doi.org/10.1007/s11430-012-4382-7. [15] Grinsted A., Moore J.C., Jevrejeva S.,2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561-566. https://doi.org/10.5194/npg-11-561-2004. [16] Harrison P.J., Yin K.D., Lee J.H.W., Gan, J.P., Liu, H.B., 2008. Physical-biological coupling in the Pearl River Estuary. Continental Shelf Research 28(12), 1405-1415. https://doi.org/10.1016/j.csr.2007.02.011. [17] Haug G.H., Hughen K.A., Sigman D.M., Peterson L.C., Röhl U., 2001. Southward migration of the intertropical convergence zone through the Holocene. Science, 293(5533), 1304-1308. https://doi.org/10.1126/science.1059725. [18] He J., Zhao M.X., Li L., Wang P.X., Ge H.M., 2008. Sea surface temperature and terrestrial biomarker records of the last 260 ka of core MD05-2904 from the northern South China Sea. Chinese Science Bulletin, 53(15), 2376-2384. https://doi.org/10.1007/s11434-008-0289-2. [19] Heaton T., Köhler P., Butzin M., Bard E., Reimer R., Austin W.,Bronk Ramsey, C., Grootes, P., Hughen, K., Kromer, B., Reimer, P., Adkins, J., Burke, A., Cook, M., Olsen, J., Skinner, L., 2020. Marine20—The marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon, 62(4), 779-820. https://doi.org/10.1017/RDC.2020.68. [20] Hu C.Y., Henderson G.M., Huang J.H., Xie S.C., Sun Y., Johnson K.R.,2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters, 266(3-4), 221-232. https://doi.org/10.1016/j.epsl.2007.10.015. [21] Hu Z., Huang B.Q., Liu L.J., Wang N., 2021. Spatiotemporal patterns of sediment deposition on the northern slope of the South China Sea in the last 150,000 years. Journal of Palaeogeography, 10(3), 399-415. https://doi.org/10.1186/s42501-021-00102-3. [22] Huang E.Q., Chen Y.R., Schefuß E., Steinke S., Liu J.J., Tian J.,Martínez-Méndez, G., Mohtadi, M., 2018. Precession and glacial-cycle controls of monsoon precipitation isotope changes over East Asia during the Pleistocene. Earth and Planetary Science Letters, 494, 1-11. https://doi.org/10.1016/j.epsl.2018.04.046. [23] Huang R.H., Wu Y.F., 1989. The influence of ENSO on the summer climate change in China and its mechanism.Advances in Atmospheric Sciences, 6(1), 21-32. [24] Ichiyanagi K., Yamanaka M.D., 2005. Interannual variation of stable isotopes in precipitation at Bangkok in response to El Ñino Southern Oscillation. Hydrological Processes, 19(17), 3413-3423. https://doi.org/10.1002/hyp.5978. [25] Jia G.D., Bai Y., Yang X.Q., Xie L.H., Wei G.J., Ouyang T.P., Chu G.Q., Liu Z.H., Peng P.A.,2015. Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in southern China. Quaternary Science Reviews, 111, 51-61. https://doi.org/10.1016/j.quascirev.2015.01.002. [26] Jin L.Y., Schneider B., Park W., Latif M., Khon V., Zhang X.J.,2014. The spatial-temporal patterns of Asian Summer Monsoon precipitation in response to Holocene insolation change: A model-data synthesis. Quaternary Science Reviews, 85, 47-62. https://doi.org/10.1016/j.quascirev.2013.11.004. [27] Khan N.S., Horton B.P., Engelhart S., Rovere A., Vacchi M., Ashe E.L., Törnqvist T.E., Dutton A., Hijma M.P., Shennan I., the HOLSEA working group, 2019. Inception of a global atlas of sea levels since the Last Glacial Maximum. Quaternary Science Reviews, 220, 359-371. https://doi.org/10.1016/j.quascirev.2019.07.016. [28] Kim S.-T., O'Neil J.R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16), 3461-3475. https://doi.org/10.1016/S0016-7037(97)00169-5. [29] Klein S.A., Soden B.J., Lau N.C., 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge.Journal of Climate, 12(4), 917-932. [30] Kong D.M., Zong Y.Q., Jia G.D., Wei G.J., Chen M.T., Liu Z.H.,2014. The development of late Holocene coastal cooling in the northern South China Sea. Quaternary International, 349, 300-307. https://doi.org/10.1016/j.quaint.2013.08.055. [31] Koutavas A., Joanides S., 2012. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography, 27(4), A4208. https://doi.org/10.1029/2012PA002378. [32] Lambeck K., Rouby H., Purcell A., Sun Y.Y., Sambridge M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 111(43), 15296-15303. https://doi.org/10.1073/pnas.1411762111. [33] Lambeck K., Yokoyama Y., Purcell T., 2002. Into and out of the Last Glacial Maximum: Sea-level change during Oxygen Isotope Stages 3 and 2. Quaternary Science Reviews, 21(1-3), 343-360. https://doi.org/10.1016/S0277-3791(01)00071-3. [34] Laskar J., Robutel P., Joutel F., Gastineau M., Correia A.C.M., Levrard B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428(1), 261-285. https://doi.org/10.1051/0004-6361:20041335. [35] LeGrande A.N., Schmidt G.A., 2011. Water isotopologues as a quantitative paleosalinity proxy. Paleoceanography, 26(3), A3225. https://doi.org/10.1029/2010PA002043. [36] Lin C.F.,2000. Oxygen Isotope Compositions of Seawaters from the South China Sea and Luzon Strait (Master Thesis). National Sun Yat-Sen University, Kaohsiung, Taiwan. [37] Liu C.L., Fürsich F.T., Wu J., Dong Y.X., Yang T.T., Yin J.,2013. Late Quaternary palaeoenvironmental changes documented by microfaunas and shell stable isotopes in the southern Pearl River Delta plain, South China. Journal of Palaeogeography, 2(4), 344-361. https://doi.org/10.3724/SP.J.1261.2013.00035. [38] Liu Z., Brady E., Lynch-Stieglitz J., 2003. Global ocean response to orbital forcing in the Holocene. Paleoceanography, 18(2), 1041. https://doi.org/10.1029/2002PA000819. [39] Liu Z.Y., Kutzbach J., Wu L.X., 2000. Modeling climate shift of El Nino variability in the Holocene. Geophysical Research Letters 27(15), 2265-2268. https://doi.org/10.1029/2000GL011452. [40] Liu Z.Y., Wen X.Y., Brady E.C.,Otto-Bliesner, B., Yu, G., Lu, H.Y., Cheng, H., Wang, Y.J., Zheng, W.P., Ding, Y.H., Edwards, R.L., Cheng, J., Liu, W., Yang, H., 2014. Chinese cave records and the East Asia Summer Monsoon. Quaternary Science Reviews, 83, 115-128. https://doi.org/10.1016/j.quascirev.2013.10.021. [41] Malaizé B., Caleye T., 2009. Sea surface salinity reconstruction as seen with foraminifera shells: Methods and cases studies. EPJ Web of Conferences, 1, 177-188. https://doi.org/10.1140/epjconf/e2009-00919-6. [42] Mao Q.W., Shi P., Yin K.D., Gan J.P., Qi Y.Q.,2004. Tides and tidal currents in the Pearl River Estuary. Continental Shelf Research, 24(16), 1797-1808. https://doi.org/10.1016/j.csr.2004.06.008. [43] McGregor H.V., Gagan M.K., 2004. Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño-Southern Oscillation. Geophysical Research Letters, 31(11), L11204. https://doi.org/10.1029/2004GL019972. [44] Moy C.M., Seltzer G.O., Rodbell D.T., Anderson D.M., 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420(6912), 162-165. https://doi.org/10.1038/nature01194. [45] Muri H., Berger A., Yin Q.Z., Karami M.P., Barriat P., 2013. The climate of the MIS-13 interglacial according to HadCM3. Journal of Climate, 26(23), 9696-9712. https://doi.org/10.1175/JCLI-D-12-00520.1. [46] Niu J.,2013. Precipitation in the Pearl River basin, South China: Scaling, regional patterns, and influence of large-scale climate anomalies. Stochastic Environmental Research and Risk Assessment, 27(5), 1253-1268. https://doi.org/10.1007/s00477-012-0661-2. [47] Oppo D.W., Rosenthal Y., Linsley B.K., 2009. 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature, 460(7259), 1113-1116. https://doi.org/10.1038/nature08233. [48] Oppo D.W., Schmidt G.A., LeGrande A.N., 2007. Seawater isotope constraints on tropical hydrology during the Holocene. Geophysical Research Letters, 34(13), L13701. https://doi.org/10.1029/2007GL030017. [49] Oppo D.W., Sun Y.B., 2005. Amplitude and timing of sea-surface temperature change in the northern South China Sea: Dynamic link to the East Asian monsoon. Geology, 33(10), 785-788. https://doi.org/10.1130/G21867.1. [50] Ou S.Y., Zhang H., Wang D.X., 2009. Dynamics of the buoyant plume off the Pearl River Estuary in summer. Environmental Fluid Mechanics, 9(5), 471-492. https://doi.org/10.1007/s10652-009-9146-3. [51] Parnell A.C., Haslett J., Allen J.R.M., Buck, C.E., Huntley, B., 2008. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews, 27(19), 1872-1885. https://doi.org/10.1016/j.quascirev.2008.07.009. [52] Peltier W.R.,1994. Ice age paleotopography. Science, 265(5169), 195-201. https://doi.org/10.1126/science.265.5169.195. [53] Polissar P.J., Abbott M.B., Wolfe A.P., Vuille M., Bezada M., 2013. Synchronous interhemispheric Holocene climate trends in the tropical Andes. Proceedings of the National Academy of Sciences, 110(36), 14551-14556. https://doi.org/10.1073/pnas.1219681110. [54] Ruan J.Y., Zhang H.Y., Cai Z.Y., Yang X.Q., Yin J.,2019. Regional controls on daily to interannual variations of precipitation isotope ratios in Southeast China: Implications for paleomonsoon reconstruction. Earth and Planetary Science Letters, 527, 115794. https://doi.org/10.1016/j.epsl.2019.115794. [55] Selvaraj K., Chen C.T.A., Lou J.-Y., 2007. Holocene East Asian monsoon variability: Links to solar and tropical Pacific forcing. Geophysical Research Letters, 34, L1703. https://doi.org/10.1029/2006GL028155. [56] Shi J.Y., Jin Z.J., Liu Q.Y., Zhang R., Huang Z.K.,2019. Cyclostratigraphy and astronomical tuning of the middle Eocene terrestrial successions in the Bohai Bay Basin, eastern China. Global and Planetary Change, 174, 115-126. https://doi.org/10.1016/j.gloplacha.2019.01.001. [57] Shu Y.Q., Chen J., Yao J.L., Pan J.Y., Wang W.W., Mao H.B., Wang D.X., 2014. Effects of the Pearl River plume on the vertical structure of coastal currents in the Northern South China Sea during summer 2008. Ocean Dynamics, 64(12), 1743-1752. https://doi.org/10.1007/s10236-014-0779-5. [58] Southon J., Kashgarian M., Fontugne M., Metivier B., W-S Yim W., 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon, 44(1), 167-180. https://doi.org/10.1017/S0033822200064778. [59] Steinhilber F., Abreu J.A., Beer J., Brunner I., Christl M., Fischer H., Heikkilä U., Kubik P.W., Mann M., McCracken K.G., Miller H., Miyahara H., Oerter H., Wilhelms F., 2012. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences,109(16), 5967-5971. https://doi.org/10.1073/pnas.1118965109. [60] Strong D., Flecker R., Valdes P.J., Wilkinson I.P., Rees J.G., Michaelides K., Zong Y.Q., Lloyd J.M., Yu F.L., Pancost R.D.,2013. A new regional, mid-Holocene palaeoprecipitation signal of the Asian Summer Monsoon. Quaternary Science Reviews, 78, 65-76. https://doi.org/10.1016/j.quascirev.2013.07.034. [61] Su J.L.,2004. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Research, 24(16), 1745-1760. https://doi.org/10.1016/j.csr.2004.06.005. [62] Sun Y.Y.,2016. Holocene Sea-level Change in the Western North Pacific Marginal Seas and Coastal Responses to Recent Sea-level Change in the Deep Bay Wetlands (PhD Thesis). The University of Hong Kong, Pokfulam, Hong Kong SAR, 146 p. [63] Sun Z., Yang Y., Zhao J.Y., Tian N., Feng X.X.,2018. Potential ENSO effects on the oxygen isotope composition of modern speleothems: Observations from Jiguan Cave, central China. Journal of Hydrology, 566, 164-174. https://doi.org/10.1016/j.jhydrol.2018.09.015. [64] Tan M.,2014. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Climate Dynamics, 42(3), 1067-1077. https://doi.org/10.1007/s00382-013-1732-x. [65] Tian J., Wang P.X., Cheng X.R.,2004. Development of the East Asian monsoon and Northern Hemisphere glaciation: Oxygen isotope records from the South China Sea. Quaternary Science Reviews ,23(18), 2007-2016. https://doi.org/10.1016/j.quascirev.2004.02.013. [66] Tierney J.E., Oppo D.W., Rosenthal Y., Russell J.M., Linsley B.K., 2010. Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia. Paleoceanography, 25(1), A1102. https://doi.org/10.1029/2009PA001871. [67] Toledo F.A.L., Costa, K.B., Pivel, M.A.G., 2007. Salinity changes in the western tropical South Atlantic during the last 30 kyr. Global and Planetary Change, 57(3-4), 383-395. https://doi.org/10.1016/j.gloplacha.2007.01.001. [68] Wang L., Sarnthein M., Erlenkeuser H., Grimalt J., Grootes P., Heilig S., Ivanova E., Kienast M., Pelejero C., Pflaumann U., 1999. East Asian monsoon climate during the late Pleistocene: High-resolution sediment records from the South China Sea. Marine Geology, 156, 245-284. https://doi.org/10.1016/S0025-3227(98)00182-0. [69] Wang P.X., Li Q.Y., Tian J., He J., Jian Z.M., Ma W.T., Dang H.W.,2016b. Monsoon influence on planktic δ18O records from the South China Sea. Quaternary Science Reviews, 142, 26-39. https://doi.org/10.1016/j.quascirev.2016.04.009. [70] Wang X.S., Chu G.Q., Sheng M., Zhang S.Q., Li J.H., Chen Y., Tang L., Su Y.L., Pei J.L., Yang Z.Y.,2016a. Millennial-scale Asian Summer Monsoon variations in South China since the last deglaciation. Earth and Planetary Science Letters, 451, 22-30. https://doi.org/10.1016/j.epsl.2016.07.006. [71] Wei G.J., Deng W.F., Liu Y., Li X.H.,2007. High-resolution sea surface temperature records derived from foraminiferal Mg/Ca ratios during the last 260 ka in the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology ,250, 126-138. https://doi.org/10.1016/j.palaeo.2007.03.005. [72] Wei X., Wu C.Y., Ni P.T., Mo W.Y., 2016. Holocene delta evolution and sediment flux of the Pearl River, southern China. Journal of Quaternary Science, 31(5), 484-494. https://doi.org/10.1002/jqs.2873. [73] Woodroffe C.D., Beech M.R., Gagan M.K., 2003. Mid-late Holocene El Niño variability in the equatorial Pacific from coral microatolls. Geophysical Research Letters, 30(7), 1358. https://doi.org/10.1029/2002GL015868. [74] Wu C.J., Usoskin I.G., Krivova N., Kovaltsov G.A., Baroni M., Bard E., Solanki S.K., 2018. Solar activity over nine millennia: A consistent multi-proxy reconstruction. Astronomy and Astrophysics, 615, A93. https://doi.org/10.1051/0004-6361/201731892. [75] Wu M.C., Chang W.L., Leung W.M., 2004. Impacts of El Niño-Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. Journal of Climate, 17, 1419-1428. https://doi.org/10.1175/1520-0442(2004)017<1419:IOENOE>2.0.CO;2. [76] Wu M.S., Zong Y.Q., Mok K.M., Cheung K.M., Xiong H.X., Huang G.Q.,2017. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea. Journal of Asian Earth Sciences ,135, 268-280. https://doi.org/10.1016/j.jseaes.2017.01.004. [77] Xiong H.X., Zong Y.Q., Qian P., Huang G.Q., Fu S.Q.,2018. Holocene sea-level history of the northern coast of South China Sea. Quaternary Science Reviews, 194, 12-26. https://doi.org/10.1016/j.quascirev.2018.06.022. [78] Xu C., Xu Y.J., Hu J.T., Li S.Y., Wang B.,2019. A numerical analysis of the summertime Pearl River plume from 1999 to 2010: Dispersal patterns and intraseasonal variability. Journal of Marine Systems, 192, 15-27. https://doi.org/10.1016/j.jmarsys.2018.12.010. [79] Xu H., Lan J.H., Sheng E.G., Liu B., Yu K.K., Ye Y.D., Shi Z.G., Cheng P., Wang X.L., Zhou X.Y., Yeager K.M., 2016. Hydroclimatic contrasts over Asian monsoon areas and linkages to tropical Pacific SSTs. Scientific Reports, 6, 33177. https://doi.org/10.1038/srep33177. [80] Yang Y.P., Xiang R., Liu J.G., Tang L.G.,2019. Inconsistent sea surface temperature and salinity changing trend in the northern South China Sea since 7.0 ka BP. Journal of Asian Earth Sciences, 171, 178-186. https://doi.org/10.1016/j.jseaes.2018.05.033. [81] Ye F., Deng W.F., Xie L.H., Wei G.J., Jia G.D.,2014. Surface water δ18O in the marginal China seas and its hydrological implications. Estuarine, Coastal and Shelf Science, 147, 25-31. https://doi.org/10.1016/j.ecss.2014.05.033. [82] Yu F.L., Zong Y.Q., Lloyd J.M., Leng M.J., Switzer A.D., Yim W.W., Huang G.Q., 2012. Mid-Holocene variability of the East Asian monsoon based on bulk organic δ13C and C/N records from the Pearl River estuary, southern China. The Holocene, 22(6), 705-715. https://doi.org/10.1177/0959683611417740. [83] Yuan D.X., Cheng H., Edwards R.L., Dykoski C.A., Kelly M.J., Zhang M.L., Qing J.M., Lin Y.S., Wang Y.J., Wu J.Y., Dorale J.A., An Z.S., Cai Y.J., 2004. Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 304(5670), 575-578. https://doi.org/10.1126/science.1091220. [84] Zhang J.P., Lu H.Y., Jia J.W., Shen C.M., Wang S.Y., Chu G.Q., Wang L., Cui A.N., Liu J.Q., Wu N.Q., Li F.J., 2020a. Seasonal drought events in tropical East Asia over the last 60,000 y. Proceedings of the National Academy of Sciences, 117(49), 30988-30992. https://doi.org/10.1073/pnas.2013802117. [85] Zhang T.W., Yang X.Q., Chen Q., Toney J.L., Zhou Q.X., Gao H.H., 2020b. Humidity variations spanning the ‘Little Ice Age’ from an upland lake in southwestern China. The Holocene, 30(2), 289-299. https://doi.org/10.1177/0959683619883026. [86] Zhao Y., Yu Z.C., Chen F.H., Zhang J.W., Yang B.,2009. Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Science Reviews, 97, 242-256. https://doi.org/10.1016/j.earscirev.2009.10.007. [87] Zhou B., Zheng H.B., Yang W.G., Taylor D., Lu Y.H., Wei G.J., Li L., Wang H., 2012. Climate and vegetation variations since the LGM recorded by biomarkers from a sediment core in the northern South China Sea. Journal of Quaternary Science, 27(9), 948-955. https://doi.org/10.1002/jqs.2588. [88] Zhou W.H., Long A.M., Jiang T., Chen S.Y., Huang L.M., Huang H., Cai C.H., Yan Y.,2011. Bacterioplankton dynamics along the gradient from highly eutrophic Pearl River Estuary to oligotrophic northern South China Sea in wet season: Implication for anthropogenic inputs. Marine Pollution Bulletin, 62(4), 726-733. https://doi.org/10.1016/j.marpolbul.2011.01.018. [89] Zhou W.J., Yu X.F., Jull A.J.T., Burr, G., Xiao, J.Y., Lu, X.F., Xian, F., 2004. High-resolution evidence from southern China of an early Holocene optimum and a mid-Holocene dry event during the past 18,000 years. Quaternary Research, 62(1), 39-48. https://doi.org/10.1016/j.yqres.2004.05.004. [90] Zong, Y.Q., Yim, W.W.S., Yu, F., Huang, G., 2009. Late Quaternary environmental changes in the Pearl River mouth region, China. Quaternary International, 206(1), 35-45. https://doi.org/10.1016/j.quaint.2008.10.012. [91] Zong Y.Q., Huang K.Y., Yu F.L., Zheng Z., Switzer A., Huang G.Q., Wang N., Tang M.,2012. The role of sea-level rise, monsoonal discharge and the palaeo-landscape in the early Holocene evolution of the Pearl River delta, southern China. Quaternary Science Reviews, 54, 77-88. https://doi.org/10.1016/j.quascirev.2012.01.002. [92] Zong Y.Q., Zheng Z., Huang K.Y., Sun Y.Y., Wang N., Tang M., Huang G.Q.,2013. Changes in sea level, water salinity and wetland habitat linked to the late agricultural development in the Pearl River delta plain of China. Quaternary Science Reviews, 70, 145-157. https://doi.org/10.1016/j.quascirev.2013.03.020.