[1] Alfaro P., Moretti M., Owen G., (Eds.), 2016. The environmental significance of soft-sediment deformation.Sedimentary Geololy, 344, iii-iv, 1-408.
[2] Allen J.R.L.,1965. Late Quaternary Niger Delta, and adjacent areas: sedimentary environments and lithofacies.AAPG Bulletin, 49, 547-600.
[3] Allen J.R.L.,1984. Sedimentary Structures,Their Character and Physical Basis, Unabridged One-Volume.Elsevier, Amsterdam, I, p. 593, and II, p. 663.
[4] Allen J.R.L.1985. Loose-boundary hydraulics and fluid mechanics: selected advances since 1961. In Sedimentology: recent developments and applied aspects, ed. P.J. Brenchley and P.J. Williams, 7-28. Oxford: Published for the Geological Society by Blackwell Scientific Publications.
[5] Alsop G.I., Marco S., 2013. Seismogenic slump folds formed by gravity-driven tectonics down a negligible subaqueous slope.Tectonophysics, 605, 48-69.
[6] Apel J.R.,1987. Principles of Ocean Physics, International Geophysics 38. Academic Press, London, 63 p.
[7] Apel J.R.,2002. Oceanic internal waves and solitons. In: Jackson, C.R., Apel, J.R. (Eds.), An Atlas of Oceanic Internal Solitary-Like Waves and Their Properties (May 2002), by Global Ocean Associates, prepared for Office of Naval Research _ Code 322PO, pp. 1_40 , http://www.internalwaveatlas.com/Atlas_PDF/IWAtlas_Pg001_Introduction.PDF. (accessed 14.05.12.).
[8] Apel J.R., Ostrovsky L.A., Stepanyants Y.A., Lynch J.F., 2006. Internal solitons in the ocean. Woods HoleOceanographic Institution Technical Report WHOI-2006-04, Woods Hole Oceanographic Institution, WoodsHole, MA, 02543, 109 p.
[9] Bagnold R.A.1962. Auto-suspension of transported sediment. Proceedings of the Royal Society of London Series A 265: 315-319.
[10] Banerjee I.,1989. Tidal sand sheet origin of the transgressive Basal Colorado Sandstone (Albian): a subsurface study of the Cessford Field, Southern Alberta.Bulletin of Canadian Petroleum GeolOgy, 37, 1-17.
[11] Barton R., Bird K., Hernández J.G., Grajales-Nishimura J.M., Murillo-Mŭnetón G., Herber B., et al., 2009/2010.High impact reservoirs.Oilfield Review, 21(4), 14-29.
[12] Bates C.C.,1953. Rational theory of delta formation. AAPG Bull. 37, 2119-2162.
[13] Bea R.G., Wright S.G., Sicar P., Niedoroda A.W., 1983. Wave induced slides in South Pass Block 70, Mississippidelta.Journal of Geotechnical Engineering, 109, 619-644.
[14] Behrmann, J.H., Peter, B. Flemings, Cédric, M. John, the IODP Expedition 308 Scientists, 2006. RapidSedimentation, Overpressure, and Focused Fluid Flow, Gulf of Mexico Continental Margin. Scientific Drilling1-17. Available from: https://doi.org/10.2204/iodp.sd.3.03.2006. September 3.
[15] Booth J.S.,O’Leary, D.W., Popenoe, P., Danforth, W.W., 1993. U.S. Atlantic continental slope landslides: their distribution, general attributes, and implications. In: Schwab, W.C., Lee, H.J., Twichell, D.C. (Eds.), Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone, 2002. U.S. Geological Survey Bulletin, pp. 14-22.
[16] Bourgeois J., Hansen T.A., Wiberg P.L., Kauffman E.G., 1988. A tsunami deposit at the Cretaceous-Tertiary boundary in Texas.Science, 241, 567-570.
[17] Bouma A.H.,1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, p. 168.
[18] Bouma A.H., Hollister C.D., 1973. Deep ocean basin sedimentation. In: Middleton, G.V., Bouma, A.H. (Eds.), Turbidites and Deep-Water Sedimentation, SEPM Pacific Section Short Course, Anaheim, CA, pp. 79_118.
[19] Bouma A.H., Normark W.R., Barnes N.E. (Eds.), 1985. Submarine Fans and Related Turbidite Systems. Springer-Verlag, New York.
[20] Bouma A.H., DeVries M.B., Stone C.G., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma, Discussion.AAPG Bulletin, 81, 470-472.
[21] Boyd R., Ruming K., Goodwin I., Sandstrom M., Schröder-Adams C., 2008. Highstand transport of coastal sandto the deep ocean: a case study from Fraser Island, southeast Australia.Geology, 36, 15-18.
[22] Breien H., De Blasio F.V., Elverhøi A., Nystuen J.P., Harbitz C.B., 2010. Transport mechanisms of sand in deepmarineenvironments—insights based on laboratory experiments.Journal of SedimentaryResearch, 80, 975-990.
[23] Briggs G., Cline L.M., 1967. Paleocurrents and source areas of Late Paleozoic sediments of the Ouachita Mountains, Southeastern Oklahoma.Journal of Sedimentary Petrology, 37, 985-1000.
[24] Broecker W.S.,1991. The great ocean conveyor.Oceanography, 4, 79-89.
[25] Brönnimann C.S.,2011. Effect of Groundwater on Landslide Triggering (Ph.D. dissertation). E´ cole PolytechniqueFèdèrale de Lausanne, Lausanne, 239 p.
[26] Cacchione D.A., Pratson L.F., Ogston A.S., 2002. The shaping of continental slopes by internal tides.Science, 296, 724-727.
[27] Cannon S.H., Kirkham R.M., Parise M., 2001. Wildfire-related debris-flow initiation processes, Storm KingMountain, Colorado.Geomorphology, 171-188.
[28] Catuneanu O.,2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 386 p.
[29] Chanson H.2004. Hydraulics of Open Channel Flow. Elsevier. eBook ISBN: 9780080472973
[30] Chow, Ven Te, 2008. Open-Channel Hydraulics. Caldwell, NJ: The Blackburn Press. ISBN 978-1932846188.Claeys, P., Kiessling, W., Alvarez, W., 2002. Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In: Koeberl, C., MacLeod, K.G. (Eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond.Geological Society of America Special Paper 356, pp. 55-68.
[31] Clark J.D., Stanbrook D.A., 2001. Formation of large-scale shear structures during the deposition of high-density turbidity currents, Grès d’Annot Formation, SE France. In: McCaffrey, W.D., Kneller, B.C., Peakall, J. (Eds.), Particulate Gravity Currents, 31. IAS Special Publication, pp. 219-232.
[32] Clifton, H.E. (Ed.), 1988. Sedimentologic Consequences of Convulsive Geologic Events. Geological Society of America Special Paper, 229.
[33] Coleman Jr., J.L., 1997. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma, Discussion.AAPG Bulletin, 81, 466-469.
[34] Coleman J.M., Prior D.B., 1982. Deltaic environments. In: Scholle, P.A., Spearing, D. (Eds.), SandstoneDepositional Environments, 31. AAPG Memoir, pp. 139-178.
[35] Collinson J.D.,1994. Sedimentary deformational structures. In: Maltman, A. (Ed.), The Geological Deformation of Sediments. Chapman & Hall, London, pp. 95-125.
[36] Collot J.-Y., Lewis K., Lamarche G., Lallemand S., 2001. The giant Ruatoria debris avalanche on the northernHikurangi margin, New Zealand: result of oblique seamount subduction. Journal of Geophysical Research, 106 (B9), 19, 271-19, 297.
[37] Cook H. E.,1979. Ancient continental slope sequences and theirvalue in understanding modern slope development. In: Doyle, L.J., Pilkey, O. H., (eds). Geology of Continental Slopes. Tulsa, OK: SEPM Special Publication, 27, 287-305.
[38] Cossey S. P.J. 2011. Mass-transport deposits in the Upper Paleocene Chicontepec Formation, Mexico. In: Shipp etal. (Eds.), Mass-Transport Deposits in Deepwater Settings. SEPM (Society for Sedimentary Geology) SpecialPublication, 96, 269-277.
[39] Cruden D.M., Varnes D.J., 1996. Landslides types and processes. In: Turner, A.K., Schuster, R.L. (Eds.), Landslides Investigation and Mitigation, 247. Transportation Research Board National Research Council, Washington, DC, pp. 36-75. Special Report.
[40] Curray J.R., Moore D.G., 1974. Sedimentary and tectonic processes in the Bengal Deep-sea Fan and Geosyncline. In: Burk, C.A., Drake, C.L. (Eds., ), Continental Margins, Springer, New York, pp. 617-627.
[41] D'Agostino A.E., Jordan D.W., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma: discussion.AAPG Bulletin, 473-475.
[42] Damuth J.E., Fairbridge R.W., 1970. Equatorial Atlantic deepsea sands and ice age aridity in tropical SouthAmerica.GSA Bulletin, 81, 585-601.
[43] Damuth J.E., Embley R.W., 1981. Mass-transport processes on Amazon Cone: Western Equatorial Atlantic.AAPG Bulletin, 65, 629-643.
[44] Damuth J.E., Flood R.D., Kowsmann R.O., Gorini M.A., Belderson R.H., Gorini M.A., 1988. Anatomy and growth-pattern of Amazon deep-sea fan revealed by long-range side-scan sonar (GLORIA) and highresolution seismic studies.AAPG Bulletin, 72, 885-911.
[45] Dan G., Sultan N., Savoye B., 2007. The 1979 Nice harbour catastrophe revisited, trigger mechanism inferredfrom geotechnical measurements and numerical modeling.Marine Geology, 245, 40-64.
[46] Dasgupta P.,2003. Sediment-gravity flow-the conceptual problems.Earth-Science Review, 62, 265-281.
[47] de Castro, S., F.J. Hernandez-Molina, F.J. Rodriguez-Tovar, E. Llave, Z.L. Ng, N. Nishida, A. Mena, et al.2020. Contourites and bottom current reworked sands: Bed facies model and implications.Marine Geology, 428: 106-267.
[48] Dill R.F., Marshall N.F., Reimnitz E., 1975. In Situ Submersible Observations of Sediment Transport and Erosive Features in Rio Balsas Submarine Canyon, Mexico (Abs), Geological Societyof America, 7. pp. 1052-1053.
[49] Dillon W.P., Zimmerman H.P., 1970. Erosion by biological activity in two new England submarine canyons.Journal ofSedimentary Petrology, 40, 542-547.
[50] Dott Jr., R.H., 1963. Dynamics of subaqueous gravity depositional processes.AAPG Bulletin, 47, 104-128.
[51] Drazin P. G.,2003. Encyclopedia of Atmospheric Sciences. Elsevier Ltd. pp. 1068-1072. doi:10.1016/B978-0-12-382225-3.00190-0
[52] Duncan J.M., Wright S.G., 2005. Soil Strength and Slope Stability. John Wiley & Sons, Inc, Hoboken, NJ, 297 p.
[53] Dykstra M.,2012. Deep-water tidal sedimentology. In: Davis Jr., R.A., Dalrymple, R.W. (Eds.), Principles of Tidal Sedimentology. Springer, Berlin, pp. 371_\-396.371-396.
[54] Dysthe K., Krogstad H.E., Muller P., 2008. Oceanic rogue waves.Annual Review of Fluid Mechanics, 40, 287-310.
[55] Dzulynski S., Ksiazkiewicz M., Kuenen Ph. H., 1959. Turbidites in flysch of the Polish Carpathian Mountains.GSA Bulletin, 70, 1089-1118.
[56] Elverhøi A., Norem H., Anderson E.S., Dowdeswell J.A., Fossen I., Haflidason H., et al., 1997. On the origin and flow behavior of submarine slides on deep-sea fans along the Norwegian-Barents Sea continental margin.Geo-Marine Letters, 17, 119-125.
[57] Elverhøi A.,De Blasio, F., Butt, F.A., Issler, D., Harbitz, C.B., Engvik, L., et al., 2002. Submarine mass-wasting onglacially-influenced continental slopes: processes and dynamics. In: Dowdeswell, J.A., O’Cofaigh, C. (Eds.), Glacier-Influenced Sedimentation on High-Latitude Continental Margins, 203. Geological Society, London, Special Publications, pp. 73-87.
[58] Embley R.W.,1980. The role of mass transport in the distribution and character of deep-ocean sediments with special reference to the North Atlantic.Marine Geology, 38, 23-50.
[59] Enos P.,1977. Flow regimes in debris flow.Sedimentology, 24, 133-142.
[60] Etienne S., Mulder T., Bez M., Desaubliaux G., Kwasniewski A., Parize O., et al., 2012. Multiple scale characterization of sand-rich distal lobe deposit variability, examples from the Annot Sandstones Formation, Eocene-Oligocene, SE France.Sedimentary Geology, 273_274, 1-18.
[61] Ewing M., Ettrium S.L., Ewing J.L., Le Pichon, X., 1971. Sediment transport and distribution in the Argentine Basin: Part 3, Nepheloid layer and process of sedimentation. In: Ahrens, L.A., Press, F., Runcorn, S.K., Urey, H.C. (Eds.), Physics and Chemistry of the Earth. Pergamon Press, London, pp. 55-77.
[62] Fairbridge R. W.1980. The estuary: its definition and geologic cycle. In Chemistry and Biogeochemistry of Estuaries. In: Olausson, E. and Cato, I. (Eds), New York: Wiley Interscience. 1-36.
[63] Fallgatter C.,B. Kneller,P.S.G. Paim,J.P. Milana,et al.,2017. Transformation, partitioning and flow-deposit interactions during the run-out of megaflows.Sedimentology, 64, 359-387.
[64] Faugères J.-C., Gonthier E., Stow D.A.V., 1984. Contourite drift moulded by deep Mediterranean outflow.Geology, 12, 296-300.
[65] Fisher R. V.,1971. Features of coarse-grained, high-concentrationfluids and their deposits.Journal of Sedimentary Petrology, 41, 916-927.
[66] Flood R.D., Hollister C.D., 1974. Current-controlled topography on the continental margin off the eastern UnitedStates, in Burke, C.A. In: Drake, C.L. (Ed.), The Geology of Continental Margins. Springer-Verlag, New York, pp. 197-205.
[67] Fonnesu, Marco,Marco Patacci, Peter D.W. Haughton, Fabrizio Felletti, and William D. McCaffrey. 2016. Hybrid event beds generated by local substrate delamination on a confined-basin floor. Journal of Sedimentary Research, 86 (8), 929-943. https://doi.org/10.2110/jsr.2016.58.
[68] Foreman, M. G.G., Baptista, A. M. and Walters, R. A.1992. Tidal model studies of particle trajectories around a shallow coastal bank.Atmosphere-Ocean, 30(1), 43-69.
[69] Foreman, M. G.G., Sutherland, G. and Cummins, P. F.2004. Tidal dissipation around Vancouver Island: An inverse approach.Continental Shelf Research, 24, 2167-2185.
[70] Forel F.A.,1885. Les ravins sous-lacustres des fleuves glaciaires. Comptes Rendus de. l’Acade´mie des.Science Paris, 101(16), 725-728.
[71] Foreman M.G.G., Callendar W., MacFadyen A., Hickey B.M., Thomson R.E., di Lorenzo E., 2008. Modeling the generation of the Juan de Fuca Eddy. Journal of Geophysical Research-Oceans, 113 (C3), CiteID C03006.
[72] Foreman M. G.G., Stucchi D. J., Garver K. A., Tuele D., Isaac J., Grime T., Guo M., & Morrison J.2012. A Circulation Model for the Discovery Islands, British Columbia, Atmosphere-Ocean, 50, 3, 301-316, DOI: 10.1080/07055900.2012.686900
[73] Friedman G. M., Sanders J. E., Kopaska‑Merkel, D. C., 1992. Principlesof Sedimentary Deposits: Stratigraphy and Sedimentology.New York: McMillan Publishing Company, 717 p.
[74] Frohlich C., Hornbach M.J., Taylor F.W., Shen C.-C., Moala A., Morton A.E., et al., 2009. Huge erratic boulders in Tonga deposited by a prehistoric tsunami.Geology, 37, 131-134.
[75] Fuhrman A., Kane I.A., Clare M.A., Ferguson, R.A. 164 , Schomacker, E., Bonamini E., Contreras F.A., et al., 2020. Hybrid turbidite-drift channel complexes: An integrated multiscale model:. An integrated multiscale model. Geology, 48, 562-568. Available from: https://doi.org/10.1130/G47179.1.
[76] Gao Z., Eriksson K.A., He Y., Luo S., Guo J., 1998. Deep-Water Traction Current Deposits—A Study of Internal Tides, Internal Waves, Contour Currents and Their Deposits. Science Press, Beijing and New York, Utrecht, Tokyo, 128 p.
[77] Gamboa D., Alves T., Cartwright J., Terrinha P., 2010. MTD distribution on a ‘passive’ continental margin: theEspırito Santo Basin (SE Brazil) during the Palaeogene.Marine and Petroleum Geology, 27, 1311-1324.
[78] Gao Z.Z., Eriksson K.A., He Y.B., Luo S.S., Guo J., 1998. Deep-Water Traction Current Deposits—A Study of Internal Tides, Internal Waves, Contour Currents and Their Deposits. Science Press, Beijing and New York, Utrecht, Tokyo, 128 p.
[79] Ge Z., Nemec W., Vellinga A. J., Gawthorpe R. L., 2022. How is a turbidite actually deposited? Science Advances, 2022 Jan 21;8(3):eabl9124. doi: 10.1126/sciadv.abl9124. Epub 2022 Jan 19. PMID: 35044818; PMCID: PMC8769550.
[80] Gee M.J.R., Masson D.G., Watts A.B., Allen P.A., 1999. The Saharan debris flow: an insight into the mechanicsof long-runout submarine debris flows.Sedimentology, 46, 317-335.
[81] Geist E.L.,2005. Local Tsunami Hazards in the Pacific Northwest From Cascadia Subduction Zone Earthquakes: U.S. Geological Survey Professional Paper, 1661-B, 17 p.
[82] Gill A.E.,1982. Atmosphere-Ocean Dynamics. International Geophysics Series, vol. 30. Academic Press, An Imprint of Elsevier, San Diego, CA, 662 p.
[83] Gordon A.L.,2013. Bottom water formation. In: Steele, J.H., Turekian, K.K., Thorpe, S.A. (Eds.), Encyclopedia of Ocean Sciences, second ed. Academic, San Diego, CA, pp. 415-421. , https://doi.org/10.1016/B978-0-12-409548-9.04019-7.
[84] Greene H.G., Murai L.Y., Watts P., Maher N.A., Fisher M.A., Paull C.E., et al., 2006. Submarine landslides in the Santa Barbara Channel as potential tsunami sources.Nature Hazards and Earth System Sciences, 6, 63-88.
[85] Grotzinger J., Jordan T.H., Press F., Siever R., 2007.Understanding Earth, fifth ed. W. H. Freeman & Company, New York. 579 plus Appendix.
[86] Hage, S. Galy, V. V. Cartigny, M. J. B. Acikalin, S. Clare, M. A. Grocke, D. R. Hilton, R. G. Hunt, J. E. Lintern, D. G. McGhee, C. A. Parsons, D. R. Sumner, E. J. Talling, P. J.2020. Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits.Geology, 48, 882-887.
[87] Hampton M.A.,1972. The role of subaqueous debris flows in generating turbidity currents.Journalof Sedimentary Petrology, 42, 775-793.
[88] Hampton M.A., Lee H.J., Locat J., 1996. Submarine landslides.Reviewof Geophysics, 34, 33-59.
[89] Harris P.T., Whiteway T., 2011. Global distribution of large submarine canyons: geomorphic differences betweenactive and passive continental margins.Marine Geology, 285, 69-86.
[90] Haughton P., Davis C., McCaffrey W., Barker S., 2009. Hybrid sediment gravity flow deposits- classification, origin and significance.Marine and Petroleum Geology, 26, 1900-1918.
[91] Hay A., Burling R.W., Murray J.W., 1982. Remote acoustic detection of a turbidity current surge.Science, 217, 833-835.
[92] He Y.-B., Luo J.-X., Li X.-D., Gao Z.-Z., Wen Z., 2011. Evidence of internal-wave and internal-tide deposits in the Xujiajuan Formation of the Xiangshan Group, Ningxia, China.Geo-Marine Letters 31, 509-523.
[93] Heezen B.C., Ewing M., 1952. Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. AmericanJournal of Science, 250, 849_873.
[94] Heezen B.C., Menzies R.J., Schneider E.D., Ewing W.M., Granelli N.C., 1964. Congo submarine canyon.AAPG Bulletin, 48, 1126-1149.
[95] Heezen B.C., Hollister C.D., Ruddiman W.F., 1966. Shaping of the continental rise by deep geotropic contour currents.Science, 152, 502-508.
[96] Heim A.,1882. Der Bergsturz von Elm. Zeitschrift der deutschengeologischen Gesellschaft, 34, 74-115.
[97] Heim A.,1932. Landslides and Human Lives (Bergsturz und Menschenleben):Vancouver. British Columbia, Bi-Tech Publishers, 196.
[98] Helwig J.,1970. Slump folds and early structures, northeasternNewfoundland and Appalachians.The Journal of Geology, 78, 172-187.
[99] Henstock T.J., McNeill L.C., Tappin D.R., 2006. Seafloor morphology of the Sumatran subduction zone: surface ruptureduring megathrust earthquakes? Geology, 34, 485-488. Available from: https://doi.org/10.1130/22426.1.
[100] Hernández-Molina F.J., Stow D.A.V., Alvarez-Zarikian C., 2013. IODP Expedition 339 in the Gulf of Cadiz and off West Siberia: decoding the environmental significance of the Mediterranean outflow water and its global influence.Scientific Drilling, 16, 1-11.
[101] Hiscott R.N., Pickering K.T., Bouma A.H., Hand B.M., Kneller B.C., Postma G., Soh. W., 1997. Basin-floor fans in the North Sea, sequence stratigraphic models vs. sedimentary facies, discussion.AAPG Bulletin, 81, 662-665.
[102] Holbrook, S. and Fer, I.2005. Ocean internal wave spectra inferred from seismic reflection transects. Geophysical Research Letters, 32, 15, August 2015.
[103] Hollister C.D.,1967. Sediment Distribution and Deep Circulation in the Western North Atlantic (Unpublished Ph.D. dissertation). Columbia University, New York, 467 p.
[104] Hsü, K.J., 2004. Physics of Sedimentology, second ed. Springer, Berlin, 240 p.
[105] Hsü K. J.,1989. Physical Principles of Sedimentology. Springer-Verlag, New York, 233 p.
[106] Huggett, W.S. and Woodward, M.J.1981. Tidal currents in Johnstone Strait. Pacific Marine Science Report 81-22, Institute of Ocean Sciences, Sidney, B.C., Canada (44 pp).
[107] Hughes Clarke, J. E., Marques, C. R. V. Pratomo, D.2014. Imaging active mass-wasting and sediment flows on a Fjord Delat, Squamish, British Columbia in Submarine Mass Movements and Their Consequences, 6th International Symposium, S. Krastal, J. H. Behrmann, D. Völker, M. Stipp, C. Berndt, R. Urgeles, J. Chaytor, K. Huhn, M. Strasser, C. B. Harbitz, Eds. (Advances in Natural and Technological Hazards Research, vol 37; Springer, 2014), pp. 249-260.
[108] Hungr O., Evans S. G., Bovis M., Hutchinson J. N., 2001. Reviewof the classification of landslides of the flow type.Environmentaland Engineering Geoscience, 7, 221-238.
[109] Hurst A., Cartwright J.A., Duranti D., Huuse M., Nelson M., 2005. Sand injectites: an emerging global play in deep-water clastic environments. In: Dore´, A.G., Vining, B.A. (Eds.), Petroleum Geology: North-West Europe and Global Perspectives-Proceedings of the 6th Petroleum Geology Conference. Petroleum Geology Conferences Ltd. Geological Society, London, pp. 133-144.
[110] Hwang K.-J.; Goldstein; Kuznetsova; Wang; Viñas; Sibeck (2012). "The first in situ observation of Kelvin-Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions". Journal of Geophysical Research, 117 (A08233): n/a. Bibcode:2012JGRA.117.8233H. doi:10.1029/2011JA017256. hdl:2060/20140009615
[111] Inglis I., Verstralen I., Mousset E., Salim A., Vially R., 1981. Etude se´dimentologique des Gre`s d’Annot (Région de Colmars-les-Alpes et du Col de la cayolle). ENSPM, Rueil Malmaison 169.
[112] Inman D.L., Nordstrom C.E., Flick R.E., 1976. Currents in submarine canyons: an air-sea-land interaction.Annual Review of Fluid Mechanics, 8, 275-310.
[113] Ito M.,2002. Kuroshio current-influenced sandy contourites from the Plio-Pleistocene Kazusa forearc basin, BosoPeninsula, Japan. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugères, J.-C., Viana, A.R. (Eds.), Deep-WaterContourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics, 22.Geological Society Memoirs, London, pp. 421-432.
[114] Iverson R. M.,1997. The physics of debris flows.Reviews of Geophysics, 35, 245-296.
[115] Jacobi R. D.,1976. Sediment slides on the northwestern continentalmargin of Africa.Marine Geology, 22, 157-173.
[116] Jackson C. R.,ed., 2004, An Atlas of Oceanic Internal Solitary-Like Waves and Their Properties, 2nd ed.: GlobalOcean Associates (prepared for the Office of Naval Research):http://www.internalwaveatlas.com/Atlas2_index.html (accessed October 1, 2012.
[117] Kastens K.A., Cita M.B., 1981. Tsunami induced sediment transport in the Abyssal Mediterranean Sea.GSA Bulletin, 89, 591-604.
[118] Keller G.H., Shepard F.P., 1978. Currents and sedimentary processes in submarine canyons off the northeast United States. In: Stanley, D.J., Kelling, G.K. (Eds.), Sedimentation in Submarine Canyons, Fans, and Trenches. Dowden, Hutchinson & Ross, Inc, Stroudsburg, PA, pp. 15-32.
[119] Klein G.D.,1966. Dispersal and petrology of sandstones of Stanley-Jackfork boundary, Ouachita foldbelt, Arkansas and Oklahoma.AAPG Bulletin, 50, 308-326.
[120] Klein G.D.,1971. A sedimentary model for determining paleotidal range.GSA Bulletin, 82, 2585-2592.
[121] Klein G.D.,1975. Resedimented pelagic carbonate and volcaniclastic sediments and sedimentary structures in Leg 30 DSDP cores from the western equatorial Pacific.Geology, 3, 39-42.
[122] Kuenen, Ph. H., 1957. Sole markings of graded greywacke beds.Journal of Geology, 65, 231-258.
[123] Kuenen, Ph. H., 1966. Experimental turbidite lamination in a circular flume.Journal of Geology, 74, 523-545.
[124] Lafond, C. A. and Pickford, G. L.2011. Deep water Exchanges in Bute Inlet, British Columbia.Journal of the Fisheries Research Board of Canada, 32(11), 2075-2089. DOI: 10.1139/f75-246
[125] Lamb M.P., McElroy B., Kopriva B., Shaw J., Mohrig D., 2010. Linking river-flood dynamics to hyperpycnalplume deposits: experiments, theory, and geological implications.GSA Bulletin, 122, 1389-1400.
[126] Lanteaume M., Beaudoin B., Campredon R., 1967. Figures sedimentaires du flysch ‘‘gres d’ Annot’’ du synclinal de Peira-Cava, Centre National de la Recherche Scientifique, Paris, 97 p.
[127] Leclair S.,R.W.C. Arnott.2005. Parallel lamination formed by high-density turbidity currents.Journal of Sedimentary Research, 75, 1-5.
[128] Lewis K. B.,1971, Slumping on a continental slope inclined at 1º-4º.Sedimentology, 16, 97-110.
[129] Locat J., Lee H.J., 2002. Submarine landslides: advances and challenges.Canadian Geotechnical Journal, 39, 193-212.
[130] Locat J., Lee H. J., 2005. Subaqueous debris flows. In: Jakob, M., Hungr, O., (eds). Debris-flow hazards and related phenomena.Berlin, Heidelberg: Praxis-Springer, 203-245. Chapter 9.
[131] Logan W.E.,1863. Report on the Geology of Canada. John Lovell, Montreal, 464 p.
[132] Lonsdale P., Nornark W.R., Newman W.A., 1972. Sedimentation and erosion on Horizon Guyot.GSA Bulletin, 83, 289-316.
[133] Lovell J.P.B.,D.A.V. Stow.1981. Identification of ancient sandy contourites.Geology, 9, 347-349.
[134] Lowe D.R.,1975. Water escape structures in coarse grained sediments.Sedimentology, 22, 157-204.
[135] Lowe D.R.,1976a. Subaqueous liquefied and fluidized sediment flows and their deposits.Sedimentology, 23, 285-308.
[136] Lowe D.R.,1976b. Grain flow and grain flow deposits. Journal of Sedimentary Petrology, 46, 188_199.
[137] Lowe D.R.,1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of highdensity turbidity currents.Journal of Sedimentary Petrology, 52, 279-297.
[138] Lowe D.R.,1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma, Discussion.AAPG Bulletin, 81, 460-465.
[139] Lowe D.R., Guy M., 2000. Slurry-flow deposits in the Britannia formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem,Sedimentology, 47, 31-70.
[140] Macdonald D.I.M., Moncrieff A.C.M., Butterworth P.J., 1993. Giant slide deposits from a Mesozoic fore-arc basin, Alexander Island, Antarctica.Geology, 21, 1047-1050.
[141] Madrussani G., Rossi G., Rebesco M., Picotti S., Urgeles R., Llopart J., 2018. Sediment properties in submarine mass-transport deposits using seismic and rock-physics off NW Barents Sea.MarIne Geology, 402, 264-278.
[142] Maier K.L., Gales J.A., Paull C.K., Rosenberger K., Talling P.J., Simmons S.M., Gwiazda R.,McGann, M., Cartigny, M.J.B., Lundsten, E., Anderson, K., Clare, M.A., Xu, J., Parsons, D., Barry, J.P., Wolfson-Schwehr, M., Nieminski, N.M., Sumner, E.J., et al., 2019. Linking direct measurements of turbidity currents to submarine canyon-floor deposits. FrontiersofEarth Science, 7, 144. Available from: https://doi.org/10.3389/feart.2019.00144.
[143] Major J. J., Iverson R. M., 1999. Debris-flow deposition: Effect of pore-fluid pressure and friction concentrated at flow margins.GSA Bulletin, 111(10), 1424-1434.
[144] Maltman, A. (Ed.), 1994. The Geological Deformation of Sediments. Chapman & Hall, London.
[145] Marr J.G., Harff P.A., Shanmugam G., Parker G., 2001. Experiments on subaqueous sandy gravity flows: the role of clay and water content in flow dynamics and depositional structures.GSA Bulletin, 113, 1377-1386.
[146] Martın-Chivelet, J., Fregenal-Martinez, M.A., Chaco´n, B., 2008. Traction structures in contourites. In: Rebesco, M., Camerlenghi, A. (Eds.), Contourites. Developments in Sedimentology, 60. pp. 159-182.
[147] Maslin M., Owen M., Day S., Long D., 2004. Linking continental-slope failures and climate change: testing theclathrate gun hypothesis.Geology, 32, 53-56.
[148] Masson D.G., Harbitz C.B., Wynn R.B., Pedersen G., Løvholt F., 2006. Submarine landslides: processes, triggers, and hazard prevention.Transactions of theRoyal Society of London, Series A, 364(1845), 2009-2039.
[149] McPherson J.G., Shanmugam G., Moiola R.J., 1987. Fan-deltas and braid deltas: varieties of coarse-grained deltas.GSA Bulletin, 99, 331-340.
[150] Meckel, III, L. D., 2011. Reservoir characteristics and classificationof sand-prone submarine mass-transport deposits. In: Shipp, R.C., Weimer, P., Posamentier H. W., (eds). Mass-Transport Depositsin Deepwater Settings. Tulsa, OK, SEPM Special Publication, 96, 423-454.
[151] Melosh H. J.,1979. Acoustic fluidization: A new geologic process?Journal of Geophysical Research, 84, 7513-7520.
[152] Menard H.W.,1952. Deep ripple marks in the sea.Journal of Sedimentary Petrology, 22, 3-9.
[153] Middleton G.V.,1966. Experiments on density and turbidity currents. I. Motion of the head.Canadian Journalof Earth Sciences, 3, 523-546.
[154] Middleton G.V.,1967. Experiments on density and turbidity currents: III. Deposition of sediment.Canadian Journal of Earth Sciences, 4, 475-505.
[155] Middleton G.V.,1970. Experimental studies related to problems of flysch sedimentation. In: Lajoie, J. (Ed.), Flysch Sedimentology in North America. Geological Association of Canada, pp. 253-272. Special Paper No. 7.
[156] Middleton G.V.,1973. Johannes Walther’s Law of the correlation of fades.GSA Bulletin, 84, 979-988.
[157] Middleton G.V.,1993. Sediment deposition from turbidity currents.Annual Review of Earth Planetary Sciences, 21, 89-114.
[158] Middleton G.V., Hampton M.A., 1973. Sediment gravity flows: mechanics of flow and deposition. In: Middleton, G.V., Bouma, A.H. (Eds.), Turbidites and Deep-Water Sedimentation. SEPM Pacific Section Short Course, Anaheim, CA, pp. 1-38.
[159] Moore G.F., Lackey J.K., Strasser M. and Yamashita M., 2019. Submarine Landslides on the Nankai Trough Accretionary Prism (Offshore Central Japan). In: Kei Ogata, Andrea Festa, Gian Andrea Pini (Eds.). Submarine landslides on the Nankai Trough accretionary prism: Submarine landslides: subaqueous mass transport deposits from outcrops to seismic profiles, American Geophysical Union Monograph Series. https://doi.org/10.1002/9781119500513.ch15
[160] Moore J. G., Clague D. A., Holcomb R. T., Lipman P. W., Normark W. R., Torresan M. T., 1989. Prodigious submarine landslideson the Hawaiian Ridge. Journal of Geophysical Research, 94(B122), 17, 465-17, 484.
[161] Moscardelli L., Wood L., 2008. New classification system for masstransport complexes in offshore Trinidad.Basin Research, 20, 73-98.
[162] Mosher D.C., Shipp R.C., Moscardelli L., Chaytor J.D., Baxter C.D.P., Lee H.J., et al., 2010. Submarine mass movements and their consequences.Advances in Natural and Technological HazardsResearch, 28, 786.
[163] Mulder T., Migeon S., Savoye B., Faugères J.-C., 2002. Reply to discussion by Shanmugam on. Mulder et al. (2001, Geo-Marine Letters, 21, 86-93) Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?Geo-Marine Letters, 22, 112-120.
[164] Mulder T., Syvitski J.P.M., Migeon S., Faugères J.-C., Savoye B., 2003. Marine hyperpycnal flows: initiation, behavior and related deposits: A review.Marine and Petroleum Geology, 20, 861-882.
[165] Mulder T., Philippe R., Fauge`res J.-C., Ge´rard J., 2011. Reply to the discussion by Roger Higgs on ‘Hummockycross stratification-like structures in deep-sea turbidites: Upper Cretaceous Basque basins (Western Pyrenees, France)’ by Mulder et al., Sedimentology, 56, 997-1015, Sedimentology, 58, 671-577.
[166] Murray, J., Renard, A.F., 1891. Report on deep-sea deposits based on specimens collected during he voyage of H.M.S. Challenger in the years 1872-1876. Government Printer, Challenger Reports, London.
[167] Mutti, E., 1992. Turbidite Sandstones. Agip Special Publication, Milan, p. 275.
[168] Mutti, E., Ricci Lucchi, F., 1972. Turbidites of the northern Apennines: introduction to facies analysis (English translation by Nilsen, T.H., 1978). International Geology Review, 20, 125-166.
[169] Mutti, E., Ricci Lucchi, F., Segure, T., M., Zanzucchi, G., 1984. Seismoturbidites: a new group of resedimenteddeposits. In: Cita, M.B., Ricci Lucchi, F. (Eds.), Seismicity and Sedimentation. Elsevier Scientific Publication, Amsterdam, pp. 103-116.
[170] Mutti, E., R. Tinterri, E. Remacha, N. Mavilla, S. Angella, L. Fava. 1999. An introduction to the analysis of ancient turbidite basins from an outcrop perspective, 61. Tulsa, Note Series No. 39: American Association of Petroleum Geologists Continuing Education Course.
[171] Nardin, T.R., Hein, F.J., Gorsline, D.S., Edwards, B.D., 1979. A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems. In: Doyle, L.J., Pilkey, O.H. (Eds.), Geology of Continental Slopes. Society of Economic Paleontologists and Mineralogists, pp. 61-73. Special Publication 27.
[172] Natland, M.L., 1967. New classification of water-laid clastic sediments. AAPG Bulletin, 51, 476.
[173] Nelson, C.H., Twichell, D.C., Schwab, W.C., Lee, H.J., Kenyon, N.H., 1992. Upper Pleistocene turbidite sand beds and chaotic silt beds in the channelized, distal, outer-fan lobes of the Mississippi fan. Geology, 20, 693-696.
[174] Nilsen, T.H., Abbott, P.L., 1979. Introduction. In: Nilsen, T.H., Arthur, M.A. (Eds.), Upper Cretaceous Deep-Sea Fan Deposits, San Diego, 11. Geological Society of America Annual Meeting, San Diego, CA, pp. 137-166. Fieldtrip.
[175] Norem, H., Locat, J., Schieldrop, B., 1990. An approach to the physics and the modeling of submarine flowslides. Marine Geotechnology, 9, 93-111.
[176] Normark, W.R., 1989. Observed parameters for turbidity-current flow in channels, Reserve Fan, Lake Superior. Journal of Sedimentary Petrology, 59, 423-431.
[177] Normark, W.R., Damuth, J.E., The Leg 155 Sedimentology Group, 1997. Sedimentary facies and associated depositional elements of the Amazon Fan. In: Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, J.C. (Eds.), Proceedings of the Ocean Drilling Program Scientific Results, pp. 611-651.
[178] Ogata, K., Festa, A., Pini, G.A. (Eds.), 2019. Submarine Landslides: Subaqueous Mass Transport Deposits FromOutcrops to Seismic Profiles. American Geophysical Union. Wiley, 384 P.
[179] Palladino, G., Prosser, G., Bentivenga, M., Alsop, G.I., 2019. Mass transport deposits overprinted by contractional tectonics: a case study from the southern Apennines of Italy. Geological Magazine, 156 (5), 849-873.
[180] Parsons, J.D., Whipple, K.X., Simoni, A., 2001. Experimental study of the grain-flow, fluid-mud transition indebris flows. Journal of Geology, 109, 427-447.
[181] Parsons, J.D., Schweller, W.J., Stelting, C.W., Southard, J.B., Lyons, W.J., Grotzinger, J.P., 2003. A preliminary experimental study of turbidite fan deposits—reply. Journal of Sedimentary Research, 73, 839_841.
[182] Pequegnat, W.E., 1972. A deep bottom-current on the Mississippi Cone. In: Capurro, L.R.A., Reid, J.L. (Eds.), Contribution on the Physical Oceanography of the Gulf of Mexico. Texas A&M University Oceanographic Studies, 2. Gulf Publishing, Houston, TX, pp. 65-87.
[183] Petley, D., 2012. Global patterns of loss of life from landslides. Geology, 40 (10), 927-930. Available from: https://doi.org/10.1130/G33217.1.
[184] Petley, D. 2020. Bute Inlet: a very long runout proglacial landslide in Canada. The Landslide Blog. HTTPS://BLOGS.AGU.ORG/LANDSLIDEBLOG/2020/12/16/BUTE-INLET-LANDSLIDE/ Posted 16 December 2020.
[185] Pope, E.L., Cartigny, M.J.B., Clare, M.A., Talling, P.J., Lintern, D.G., Vellinga, A., Hage, S., Açikalin, S., Bailey, L., Chapplow N., Chen Y., Eggenhuisen J.T., Hendry A., Heerema C.J., Heijnen M.S., Hubbard S.M., Hunt J.E., McGhee, C., Parsons, D.R., Simmons, S.M., Stacey, C.D., Vendettuoli, D. 2022. First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents. Science Advances, 2022 May 20;8(20), eabj3220. doi: 10.1126/sciadv.abj3220. Epub 2022 May 18. PMID: 35584216; PMCID: PMC9116613.
[186] Prior, D. B. Bornhold, B. D. Wiseman, W. J. Lowe, D. R. 1987. Turbidity current activity in a British Columbia fjord. Science, 237, 1330–1333.
[187] Ryan, S.A., Wohlgeschaffen, G., Jahan, N., Niu, H., Ortmann, A.C., Brown, T.N., King, T.L., and Clyburne, J. 2019. State of Knowledge on Fate and Behaviour of Ship-Source Petroleum Product Spills: Volume 5, Strait of Georgia and the Juan de Fuca Strait, British Columbia. Can. Manuscr. Rep. Fish. Aquat. Sci. 3176: viii + 47 p.
[188] Schafer, C. T., Cole, F. E.and Syvitski, J. P. M. 1989. Bio- and Lithofacies of Modern Sediments in Knight and Bute Inlets, British Columbia. PALAIOS, 4, 107-126.
[189] Stacey, M. W. 2005. Review of the Partition of Tidal Energy in Five Canadian Fjords. Journal of Coastal Research, 21, 731-746.
[190] Sutherland, G., Foreman, M., Garrett, C. 2007.Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proceedings of the Institution of Mechanical Engineers, Part A. Journal of Power and Energy, 221(2), 147-157. doi:10.1243/09576509JPE338
[191] Tabata, S. and Pickard, G. L., 1957. The Physical Oceanography of Bute Inlet, British Columbia. Journal of the Fisheries Board of Canada, 14 (4), (April 1957).
[192] Thomson, R.E. 1994, Physical oceanography of the Strait of Georgia–Puget Sound–Juan de Fuca Strait system. In: R.C.H. Wilson, R.J. Beamish, F. Aitkens, J. Bell. (Fds), BC/Washington Symposium on the Marine Environment. Canadian Technical Report of Fisheries and Aquatic Sciences. pp. 36-98.
[193] Thomson, R. E. 1981. Oceanography of the British Columbia coast. Canadian Special Publication Fisheires Aquatic Sciences, 56, (291 pp).
[194] Thomson, R.E. and Huggett. W.S. 1980. M2 baroclinic tides in Johnstone Strait, British Columbia. Journal of Physical Oceanography, 10, 1509–1539.
[195] Thomson, R.E., Mihaly, S.F., and Kulikov, E.A. 2007. Estuarine versus transient flow regimes in Juan de Fuca Strait. Journal of Geophysical Research-Oceans, 112(C9). doi:Artn C09022 10.1029/2006jc003925
[196] Pickering, K.T., Hiscott, R.N., 2015. Deep Marine Systems: Processes, Deposits, Environments, Tectonics and Sedimentation. American Geophysical Union. Wiley, 696 p.
[197] Pickering, K.T., Hiscott, R.N., Hein, F.J., 1989. Deep-Marine Environments. Unwin Hyman, London, 416 p.
[198] Pickering, K.T., Hiscott, R.N., Kenyon, N.H., Ricci Lucchi, F., Smith, R.D.A. (Eds.), 1995. Atlas of Deep WaterEnvironments: Architectural Style in Turbidite Systems. Chapman and Hall, London, 333 p.
[199] Pierson, T.C., Costa, J.E., 1987. Arheologic classification of subaerial sediment-water flows. In: Costa, J.E. Wieczorek, G.F. (Eds.), Debris Flows/Avalanches: Process, Recognition, and Mitigation, VII. Geological Society of America Reviews in Engineering Geology, pp. 1-12.
[200] Piper, D.J.W., 1975. Appendix II. Deformation of stiff and semilithified cores from Legs 18 and 28. Deep Sea Drilling Project 28, 977-979. , https://doi.org/10.2973/dsdp.proc.28.app2.1975..
[201] Piper, D.J.W., 1978. Turbidite muds and silts in deep-sea fans and abyssal plains. In: Stanley, D.J., Kelling, G. (Eds.), Sedimentation in Submarine Fans, Canyons, and Trenches. Hutchinson and Ross, Stroudsburg, PA, pp. 163_176.
[202] Piper, D.J.W., Brisco, C.D., 1975. Deep-water continental-margin sedimentation, DSDP Leg 28, Antarctica. In: Hayes, D.E., et al., (Eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, DC, pp. 727-755.
[203] Piper, D.J.W., Aksu, A.E., 1987. The source and origin of the 1929 Grand Banks turbidity current inferred from sediment budgets. Geo-Marine Letters, 7, 177-182.
[204] Piper, D.J.W., Shor, A.N., Hughes Clarke, J.E., 1988. The 1929 ‘Grand Banks’ earthquake, slump, and turbidity current. In: Clifton, H.E. (Ed.), Sedimentologic Consequences of Convulsive Geologic Events. Geological Society of America Special Paper, 229, 77-92.
[205] Piper, D.J.W., Pirmez, C., Manley, P.L., Long, D., Flood, R.D., Normark, W.R., et al., 1997. Mass-transport deposits of the Amazon Fan. In: Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results 155, pp. 109-143.
[206] Piper, D.J.W., Mosher, D.C., Campbell, D.C., 2012. Controls on the distribution of major types of submarine landslides. In: Clague, J.J., Stead, D. (Eds.), Landslides: Types, Mechanismsand Modeling. Cambridge University Press, Cambridge, UK, pp. 95-107.
[207] Pomar, L., Morsilli, M., Hallock, P., Ba′denas, B., 2012. Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth-Science Reviews, 111, 56-81.
[208] Popenoe, P., Schmuck, E.A., Dillon, W.P., 1993. The cape fear landslide; slope failure associatedwith salt diapirismand gas hydrate decomposition. In: Schwab, W.C., Lee, H.J., Twichell, D.C. (Eds.), Submarine Landslides:Selected Studies in the U.S. Exclusive Economic Zone, 2002. U.S. Geological Survey Bulletin, pp. 40-53.
[209] Postma, G., 1986. Classification of sediment gravity-flow deposits based on flow conditions during sedimentation.Geology, 14, 291-294.
[210] Postma, G., Nemec, W., Kleinspehn, K.L., 1988. Large floating clasts in turbidites: a mechanism for their emplacement. Sedimentary Geology, 58, 47-61.
[211] Prior, D. B., Coleman, J. M., 1984. Submarine slope instability. In:Brunsden, D., Prior, D. B. (Eds). Slope Instability. Chichester:John Wiley & Sons Ltd, 419-455.
[212] Prior, D.B., Hooper, J.R., 1999. Sea floor engineering geomorphology: recent achievements and future directions.Geomorphology, 31, 411-439.
[213] Prior, D.B., Suhayda, J.N., Lu, N.-Z., Bornhold, B.D., Keller, G.H., Wiseman, W.J., et al., 1989. Storm wave reactivationof a submarine landslide. Nature, 341, 47-50.
[214] Purkey, S.G., Smethie, W.M., Gebbie, G., Gordon, A.L., Sonnerup, R.E., Warner, M.J., et al., 2018. A synoptic viewof the ventilation and circulation of Antarctic bottom water from chlorofluorocarbons. Annual Reviewof Marine Science, 10, 503-527.
[215] Purkis, S.J., Ward, S.N., Shernisky, H., et al. 2022. Tsunamigenic potential of an incipient submarine landslide in the Tiran Straits. Geophysical Research Letters, 19, 4. 28 February 2022 https://doi.org/10.1029/2021GL097493
[216] Racki, G. 2003. "Hot" articles in modern sedimentary research: Updated list. IAS Newsletter, 187, August 2003, 3-5.
[217] Rebesco, M., Camerlenghi, A. (Eds.), 2008. Contourites, Developments in Sedimentology 60. Elsevier, Amsterdam, 663 p.
[218] Rodríguez-Tovar, F. J., 2022. Ichnological analysis: A tool to characterize deep-marine processes and sediments. Earth-Science Reviews, 228, 104014.
[219] Rodrigues, S., F.J. Hernández-Molina, M. Fonnesu, et al., 2022. A new classification system for mixed (turbidite-contourite) depositional systems: Examples, conceptual models and diagnostic criteria for modern and ancient records. Earth-Science Reviews, (2021), https://doi.org/10.1016/j.earscirev.2022.104030.
[220] Saller, A.H., Noah, J.T., Ruzuar, A.P., Schneider, R., 2004. Linked lowstand delta to basin-floor fan deposition, offshoreIndonesia, an analog for deep-water reservoir systems. AAPG Bulletin, 88, 21-46.
[221] Sanders, J.E., 1963. Concepts of fluid mechanics provided by primary sedimentary structures. Journal of Sedimentary Petrology, 33, 173-179.
[222] Sanders, J.E., 1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton, G.V. (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation, 12. SEPM Special Publication, pp. 192-219.
[223] Schwab, W. C., Lee, H. J., Twichell, D. C., (eds). 1993. SubmarineLandslides: Selected Studies in the U.S. Exclusive EconomicZone: U.S. Geological Survey Bulletin 2002, 204.
[224] Shanmugam, G., 1980, "Petroleum Development Geology" by Parke A. Dickey: AAPG Bulletin, 64, 2040 2041.
[225] Shanmugam, G., 1985, Ophiolite source rocks for Taconic age flysch: Trace element evidence: Discussion.GSA Bulletin, v. 96, 1221 1222.
[226] Shanmugam, G., 1986. Conventional wisdom and scientific progress. Geology, 14 (8), 718.
[227] Shanmugam, G., 1988. Origin, recognition and importance of erosional unconformities in sedimentary basins, In: K.L. Kleinspehn and C. Paola, (Eds.), New perspectives in basin analysis: New York, Springer-Verlag, p. 83-108.
[228] Shanmugam, G., 1996. High-density turbidity currents: are they sandy debris flows? Journal of Sedimentary Research, 66, 2-10.
[229] Shanmugam, G., 1997. The Bouma Sequence and the turbidite mind set. Earth-Science Reviews, 42, 201-229.
[230] Shanmugam, G., 2000. 50 years of the turbidite paradigm (1950s-1990s): deep-water processes and facies models -a critical perspective. Marine and Petroleum Geology, 17, 285-342.
[231] Shanmugam, G., 2001. Book Review: “Fine-Grained Turbidite Systems” edited by A.H. Bouma and C.G. Stone: Episodes, v. 24, no. 4, p. 284 (2001)
[232] Shanmugam, G., 2002a. Ten turbidite myths. Earth-Science Reviews, 58, 311-341.
[233] Shanmugam, G., 2002b. Book Review: “Fine-grained turbidite systems” edited by A.H. Bouma and C.G. Stone: American Association of Petroleum Geologists Bulletin, vol. 86, No. 6, pp.1133-1134 (June, 2002).
[234] Shanmugam, G., 2002c. Discussion on Mulder et al. (2001, Geo-Marine Letters, 21, 86-93) Inversely graded turbiditesequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents? Geo-Marine Letters, 22, 108-111.
[235] Shanmugam, G., 2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and PetroleumGeology, 20, 471-491.
[236] Shanmugam, G., 2006a. Deep-Water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs. Handbook of Petroleum Exploration and Production, Volume 5. Elsevier, Amsterdam, p. 476 p.
[237] Shanmugam, G., 2006b. The tsunamite problem. Journal of Sedimentary Research, 76, 718-730.
[238] Shanmugam, G., 2007. The obsolescence of deep-water sequence stratigraphy in petroleum geology. Indian Journal of Petroleum Geology, 16 (1), 1-45.
[239] Shanmugam, G., 2008a. Deep-water bottom currents and their deposits. Chapter 5. In: Rebesco, M., Camerlenghi, A. (Eds.), Contourites, Developments in Sedimentology, Vol. 60. Elsevier, Amsterdam, pp. 59-81.
[240] Shanmugam, G., 2008b. Book Review: “Economic and Palaeoceanographic Significance of Contourite Deposits”. Edited by A. R. Viana and M. Rebesco. Geological Society (London) Special Publication 276, 2007. Book review in Journal of Sedimentary Research: URL: http://spot.colorado.edu/~jsedr/BookReviews/bookreviews.htm
[241] Shanmugam, G., 2008c. The constructive functions of tropical cyclones and tsunamis on deepwater sand depositionduring sea level highstand: implications for petroleum exploration. AAPG Bulletin, 92, 443-471.
[242] Shanmugam, G., 2009. Book Review: “The Cambridge Handbook of Earth Science Data”, by Paul Henderson & Gideon M. Henderson, 2009. Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK (published in the United States of America by Cambridge University Press, New York). Paperback, 277 pages. Price GBP 17.99; USD 30.00. ISBN 978-0-521-69317-2.
[243] Shanmugam, G., 2011. Book Review: “Deep-Sea Sediments” by Hüeneke, H., Mulder, T. (Eds.), 2011. Elsevier, Amsterdam, Developments in Sedimentology 63”. Geologos.
[244] Shanmugam, G., 2012a. New Perspectives on Deep-Water Sandstones: Origin, Recognition, Initiation, and Reservoir Quality. Handbook of Petroleum Exploration and Production, Volume 9. Elsevier, Amsterdam, 524 p.
[245] Shanmugam, G., 2012b. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. In: Kumar, A., Nister, I. (Eds.), Paleo-tsunamis. Natural Hazards, 63, 5-30.
[246] Shanmugam, G., 2012c. Discussion of He et al., 2011 (Geo-Marine Letters) Evidence of internal-wave and internaltide deposits in the Middle Ordovician Xujiajuan Formation of the Xiangshan Group, Ningxia, China. Geo- Marine Letters, 32, 359-366.
[247] Shanmugam, G., 2013. Modern internal waves and internal tides along oceanic pycnoclines: challenges and implications for ancient deep-marine baroclinic sands. AAPG Bulletin, 97, 767-811.
[248] Shanmugam, G., 2014. Modern internal waves and internal tides along oceanic pycnoclines: challenges andimplications for ancient deep-marine baroclinic sands: reply. AAPG Bulletin, 98, 858-879.
[249] Shanmugam, G., 2015. The landslide problem. J. Palaeogeogr. 4, 109-166.
[250] Shanmugam, G., 2016a. The contourite problem. In: Mazumder, R. (Ed.), Sediment Provenance. Elsevier, pp. 183–254.
[251] Shanmugam, G., 2016b. The seismite problem. Journal of Palaeogeography, 5 (4), 318-362.
[252] Shanmugam, G., 2016c. Submarine fans: a critical retrospective (1950-2015). Journal of Palaeogeography, 5 (2), 110-184.
[253] Shanmugam, G., 2017a. Global case studies of soft-sediment deformation structures (SSDS): definitions, classifications, advances, origins, and problems. Journal of Palaeogeography, 6 (4), 251-320.
[254] Shanmugam, G., 2017b. Contourites: physical oceanography, process sediment logy, and petroleum geology. Petroleum Exploration and Development, 44 (2), 183-216.
[255] Shanmugam, G., 2018a. A global satellite survey of density plumes at river mouths and at other environments: plume configurations, external controls, and implications for deep-water sedimentation. Petroleum Exploration and Development, 45 (4), 640-661.
[256] Shanmugam, G., 2018b. The hyperpycnite problem. Journal of Palaeogeography, 7 (1), 6. https://doi. org/10.1186/s42501-018-0001-7.
[257] Shanmugam, G., 2018c. Bioturbation and trace fossils in deep-water contourites, turbidites, and hyperpycnites: a cautionary note. Journal of Indian Association of Sedimentologists, 35, 13–32.
[258] Shanmugam, G., 2019. Global significance of wind forcing on deflecting sediment plumes at river mouths: implications for hyperpycnal flows, sediment transport, and provenance. Journal of Indian Association of Sedimentologists, 36 (2), 1-37.
[259] Shanmugam, G. 2020. Gravity flows: types, definitions, origins, identification markers, and problems. Journal of Indian Association of Sedimentologists, 37 (2), 61–90.
[260] Shanmugam, G. 2021a. Mass Transport, Gravity Flows, and Bottom Currents: Downslope and Alongslope Processes and Deposits. Elsevier, Amsterdam. 608 p.
[261] Shanmugam, G. 2021b. Deep-water processes and deposits. In: Encyclopedia of geology, ed. David Alderton and Scott A. Elias, 2nd ed., Elsevier, Amsterdam. pp. 965–1009.
[262] Shanmugam, G., 2021c. The turbidite-contourite-tidalite-baroclinite-hybridite problem: Orthodoxy vs. empirical evidence behind the “Bouma Sequence”. Journal Palaeogeography, 10 (1), 9. https://doi.org/10.1186/s42501-021-00085-1.
[263] Shanmugam, G. 2022a. Comment on “Ichnological analysis: A tool to characterize deep-marine processes and sediments” by Francisco J. Rodriguez-Tovar [Earth-Science Reviews, 228 (2022), 104014]. Earth-Science Reviews. https://authors.elsevier.com/a/1f5iu2weQpJAX=
[264] Use this link before July 7, 2022.
[265] Shanmugam, G. 2022b. Comment on “A new classification system for mixed (turbidite-contourite) depositional systems: Examples, conceptual models and diagnostic criteria for modern and ancient records” by S. Rodrigues, F.J. Hernández-Molina, M. Fonnesu, E. Miramontes, M. Rebesco, D. C. Campbell [Earth-Science Reviews (2022), https://doi.org/10.1016/j.earscirev.2022.104030. Earth-Science Reviews. in press.
[266] Shanmugam, G. 2022c. Book Review: “River Planet: Rivers from Deep Time to the Modern Crisis” by Martin Gibling (2021).” Journal of Palaeogeography, 11 (1), 1.
[267] Shanmugam, G. 2022d. The peer-review problem: a sedimentological perspective. Journal of the Indian Association of Sedimentologists, 39, 3-24.
[268] Shanmugam, G., Benedict, G.L., 1978. Fine-grained carbonate debris flow, Ordovician basin margin, SouthernAppalachians. Journal of Sedimentary Petrology, 48, 1233-1240.
[269] Shanmugam, G., Walker, K.R., 1978. Tectonic significance of distal turbidites in the Middle OrdovicianBlockhouse and lower Sevier formations in east Tennessee. American Journal of Sciences, 278, 551-578.
[270] Shanmugam, G., and Moiola, R.J., 1979. Book Review: "Principles of Sedimentology" by G. M. Friedman and J. B. Sanders: Journal of Sedimentary Petrology, 49, 679 680.
[271] Shanmugam, G., Walker, K.R., 1980. Sedimentation, subsidence, and evolution of a foredeep basin in the MiddleOrdovician, Southern Appalachians. American Journal of Sciences, 280, 479-496.
[272] Shanmugam, G., Lash, G.G., 1982. Analogous tectonic evolution of the Ordovician foredeeps, southernand central Appalachians. Geology, 10, 562–566.
[273] Shanmugam, G., Benedict III, G.L., 1983. Manganese distribution in the carbonate fraction of shallow and deepmarine lithofacies, Middle Ordovician, eastern Tennessee. Sedimentary Geology, 35, 159-175.
[274] Shanmugam, G., Moiola, R.J., 1982. Eustatic control of turbidites and winnowed turbidites. Geology, 10, 231-235.
[275] Shanmugam, G., Moiola, R.J., 1985a. Submarine fan models: problems and solutions. In: Bouma, A.H., Normark, W.R., Barnes, N.E. (Eds.), Submarine Fans and Related Turbidite Systems. Springer- Verlag, New York, pp. 29-34.
[276] Shanmugam, G., Moiola, R.J., 1985b. Sedimentary facies of the Nova Scotian upper and middle continental slope, offshore eastern Canada, Discussion. Sedimentology, 32, 455.
[277] Shanmugam, G., Damuth, J. E., Moiola, R. j. 1985a. Is the turbidite facies association scheme valid for interpreting ancient submarine fan environments?: Geology, 13, 234 237.
[278] Shanmugam, G., Moiola, R.J., Damuth, J.E., 1985b. Eustatic control of submarine fan development.In: Bouma, A.H., Normark, W.R., Barnes, N.E. (Eds.), Submarine Fans and Related Turbidite Systems, Springer-Verlag, New York, pp. 23–28.
[279] Shanmugam, G., McPherson, J.G., 1987. Sedimentation in the Chile Trench: depositional morphologies, lithofacies, and stratigraphy: discussion and reply. GSA Bulletin, 99 (4), 598.
[280] Shanmugam, G., and Higgins, J. B., 1988, Porosity enhancement from chert dissolution beneath Neocomian unconformity: Ivishak formation, North Slope, Alaska: AAPG Bulletin, 72, 523 535.
[281] Shanmugam, G., Moiola, R.J., 1988. Submarine fans: characteristics, models, classification, and reservoir potential. Earth-Science Reviews, 24, 383-428.
[282] Shanmugam, G., Moiola, R.J., 1995. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma. AAPG Bulletin, 79, 672-695.
[283] Shanmugam, G., Moiola, R.J., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma: reply. AAPG Bulletin, 81, 476-491.
[284] Shanmugam, G., Moiola, R.J., McPherson, J.G., O’Connell, S., 1988a. Comparison of turbidite facies associations in modern passive-margin Mississippi Fan with ancient active-margin fans. Sedimentary Geology, 58, 63–77.
[285] Shanmugam, G., Moiola, R.J., McPherson, J.G., O’Connell, S., 1988b. Comparison of modern Mississippi Fan with selected ancient active-margin fans. Gulf Coast Association of Geological Societies Transactions, 38, 157–165.
[286] Shanmugam, G., Moiola, R.J., Sales, J.K., 1988c. Duplex-like structures in submarine fan channels, Ouachita Mountains, Arkansas. Geology, 16, 229–232.
[287] Shanmugam, G., Spalding, T.D., Rofheart, D.H., 1993. Process sediment logy and reservoir quality of deep marine bottom-current reworked sands (sandy contourites): an example from the Gulf of Mexico. AAPG Bulletin, 77, 1241-1259.
[288] Shanmugam, G., Lehtonen, L.R., Straume, T., Syversten, S.E., Hodgkinson, R.J., Skibeli, M., 1994. Slump and debris flow dominated upper slope facies in the Cretaceous of the Norwegian and Northern North Seas (61_67 N): implications for sand distribution. AAPG Bulletin, 78, 910-937.
[289] Shanmugam, G., Bloch, R.B., Mitchell, S.M., Beamish, G.W.J., Hodgkinson, R.J., Damuth, J.E., Straume, T., Syvertsen, S. E., Shields, K. E., 1995. Basin-floor fans in the North Sea: sequence stratigraphic models vs. sedimentary facies. AAPG Bulletin, 79, 477-512.
[290] Shanmugam, G., Bloch, R.B., Damuth, Hodgkinson, R.J., 1997. Basin-floor fans in the North Sea: sequence stratigraphic models vs. sedimentary facies: reply. AAPG Bulletin, 81, 666-672.
[291] Shanmugam, G., Poffenberger, M., Toro Alava, J., 2000. Tide-dominated estuarine facies in the Hollin and Napo (‘T’ and ‘U’) formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador. AAPG Bulletin, 84, 652-682.
[292] Shanmugam, G., Shrivastava, S.K., Das, B., 2009. Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, Offshore Krishna-Godavari Basin (India): implications. Journal of Sedimentary Research, 79, 736-756.
[293] Sharpe, C. F. S., 1938. Landslides and Related Phenomena. NewYork: Columbia University Press, 137 p.
[294] Shepard, F.P., Dill, R.F., 1966. Submarine Canyons and Other Sea Valleys. Rand McNally & Co., Chicago, IL, 381 p.
[295] Shepard, F.P., Marshall, N.F., McLoughlin, P.A., Sullivan, G.G., 1979. Currents in submarine canyons and other sea valleys. AAPG Study Geology, 8, 173 p.
[296] Slatt, R.M., Weimer, P., Stone, C.G., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma, discussion. AAPG Bulletin, 81, 449–459.
[297] Solheim, A. (Ed.), 2006. Submarine mass movements and their consequences: Proceedings of the 2nd International Conference, Oslo, Norway, September 5-7, 2005. Norwegian Journal of Geology, 86, 151-372.
[298] Southard, J.B., Stanley, D.J., 1976. Shelf-break processes and sedimentation. In: Stanley, D.J., Swift, J.P. (Eds.), Marine Sediment Transport and Environmental Management. John Wiley & Sons, New York, pp. 351-377.
[299] Sowers, G., 1979. Introductory Soil Mechanics and Foundations, 4th Edition. Geotechnical Engineering, PrenticeHall, New Jersey, 640 p.
[300] Stanley, D.J., 1963. Vertical petrographic variability in Annot Sandstone turbidites. Journal of Sedimentary Petrology, 33, 783-788.
[301] Stanley, D.J., 1975. Submarine canyon and slope sedimentation (Gres D’Annot) in the French Maritime Alps. In: IXth Congress International de Sedimentologie, Nice, Field Guide, p. 129.
[302] Stanley, D.J., 1980. The Saint-Antonin Conglomerate in the Maritime Alps: A Model for Coarse Sedimentation on a Submarine Slope: Smithsonian Contributions to the Marine Sciences 5. Smithsonian Institution Press, Washington, DC, 36 pp.
[303] Stanley, D.J., 1981. Unifites: structureless muds of gravity flow origin in Mediterranean basins. Geo-Marine Letters, 1, 77-83.
[304] Stanley, D.J., 1993. Model for turbidite-to-contourite continuum and multiple process transport in deep marine settings: example in the rock record. Sedimentary Geology, 82, 241-255.
[305] Stanley, D.J., Kelling, G. (Eds.), 1978. Sedimentation in Submarine Canyons, Fans, and Trenches. Dowden, Hutchinson and Ross, Inc., Stroudsburg, PA.
[306] Stanley, D.J., Moore, G.T. (Eds.), 1983. The Selfbreak: Critical Interface on Continental Margins, No. 33. SEPM Special Publication, p. 467.
[307] Stanley, D.J., Palmer, H.D., Dill, R.F., 1978. Coarse sediment transport by mass flow and turbidity current processes and downslope transformations in Annot Sandstone canyon-fan valley systems. In: Stanley, D.J., Kelling, G. (Eds.), Sedimentation in Submarine Canyons, Fans, and Trenches. Hutchinson and Ross, Stroudsburg, PA, pp. 85-115.
[308] St. Laurent, L., Alford, M.H. and Paluszkiewicz, T. 2012, An introduction to the special issue on internal waves: Oceanography, v. 25, no. 2, p. 15–19, doi:10.5670/oceanog.2012.37.
[309] Stommel, H., 1958. The abyssal circulation. Deep-Sea Research, 5, 80-82.
[310] Stow, D.A.V., Shanmugam, G., 1980. Sequence of structures in fine-grained turbidites: comparison of recent deep sea and ancient flysch sediments. Sedimentary Geology, 25, 23-42.
[311] Stow, D.A.V., Piper, D.J.W. (Eds.), 1984. Fine-Grained Sediments: Deep-Water Processes and Facies, No. 15. Geological Society Special Publication, 659 p.
[312] Stow, D.A.V., Fauge`res, J.-C. (Ed.) 1998. Contourites, turbidites and process interaction. Sedimentary Geology, 115, pp. 1-384.
[313] Stow, D.A.V., Faugères, J.-C., 2008. Contourite facies and the facies model. In: Rebesco, M., Camerlenghi, A. (Eds.), Contourites. Elsevier, Amsterdam, pp. 223-256.
[314] Stow, D.A.V., Pudsey, C.J., Howe, J.A., Fauge`res, J.-C., Viana, A.R. (Eds.), 2002. Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics, 22.Geological Society Memoirs, London.
[315] Stow, D.A.V., Hunter, S., Wilkinson, D., Hernández-Molina, F.J., 2008. Chapter 9 The nature of contourite deposition. In: Rebesco, M., Camerlenghi, A. (Eds.), Contourites, 60. Elsevier, Amsterdam, pp. 143-156. Developments in Sedimentology
[316] Stow, D. A. V., and Z. Smillie. 2020. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites. Geosciences 10: 68. https://doi.org/10.3390/geosciences10020068.
[317] Strzeboński, P., 2022. Contrasting styles of siliciclastic flysch sedimentation in the Upper Cretaceous of the Silesian unit, Outer Western Carpathians: sediment logy and genetic implications. Annales Societatis Geologorum Poloniae, vol. 92: DOI: 10.14241/asgp.2022.04
[318] Sultan, N., P., Cochonat, M., Canals, A., Cattaneo, B., Dennielou, H., Haflidason, J. S., Laberg, D., Long, J. J., Mienert, F., Trincardi, R., Urgeles, T. O., Vorren, C., Wilson, 2004. Triggeringmechanisms of slope instability processes and sediment failureson continental margins: A geotechnical approach. Marine Geology, 213(1-4): 291-321.
[319] Surlyk, F., 1987. Slope and deep shelf gully sandstones, Upper Jurassic, East Greenland. AAPG Bulletin, 71, 464-475.
[320] Talley, L.D., 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography, 26 (1), 80-97.
[321] Talling, P.J. 2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: deposits, theoretical and experimental analyses, and generalized models. Geosphere, 9 (3), 460–488
[322] Teale, T., Young, J.R., 1987. Isolated olistoliths from the Longobucco Basin Calabria, Southern Italy. In: Leggett, J. K., Zuffa, G.G. (Eds.), Advances in Marine Clastic Sedimentology. Graham & Trotman, pp. 75-88.
[323] Terwindt, J.H.J., 1981. Origin and sequences of sedimentary structures in inshore mesotidal deposits of the North Sea. In: Nio, S.-D., Shuttenhelm, R.T.E., Van Weering, Tj.C.E. (Eds.), Holocene Marine Sedimentation in the North Sea Basin, No. 5. International Association of Sedimentologists Special Publication, pp. 4-26.
[324] Terzaghi, K., 1950. Mechanism of landslides. In: Paige, S., (ed). Applicationof Geology to Engineering Practice (Berkey Volume).New York: Geological Society of America, 83-123.
[325] Tilling, R.I., Topinka, L., Swanson, D.A., 1990. Eruptions of Mount St. Helens: Past, Present, and Future. U.S.Geological Survey Special Interest Publication, 56 p.
[326] Trincardi, F., Cattaneo, A., Correggiari, A., Mongardi, S., Breda, A., Asioli, A., 2003. Submarine slides during relative sea level rise: two examples from the eastern Tyrrhenian margin. In: Locat, J., Mienert, J. (Eds.), Submarine Mass Movements and Their Consequences. Kluwer Academic Publishers, Dordrecht, pp. 469-478.
[327] Twichell, D. C., Chaytor, J. D., ten Brink, U. S., Buczkowski, B., 2009. Morphology of late Quaternary submarine landslides alongthe U.S. Atlantic continental margin. Marine Geology, 264: 4-15.
[328] Underwood, M.B., Bachman, S.G., 1982. Sedimentary facies associations within subduction complexes.In: Leggett, J.K. (Ed.), Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins, 10. Geological Society of London Special Publication, pp. 537-550.
[329] Urgeles, R., Canals, M., Baraza, J., Alonso, B., Masson, D., 1997. The most recent megalandslides of the Canary Islands, El Golfo debris avalanche and Canary debris flow, west ElHierro Island. Journal of Geophysical Research, 102 (B9), 20305-20323.
[330] Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N., Perez-Cruz, C., 1991. The stratigraphic signatures of tectonics, Eustace and sediment logy - an overview. In: Einsele, G., Ricken, W., Seilacher, A. (Eds.), Cycles and Events in Stratigraphy. Springer-Verlag, Berlin, pp. 618-659.
[331] Van der Lingen, G.J., 1969. The turbidite problem. New Zealand Journal of Geology and Geophysics, 12, 7-50.
[332] Varnes, D.J., 1958. Landslide types and processes. In: Eckel, E.D. (Ed.), Landslide and Engineering Practice, 29. Highway Research Board Special Report, pp. 20-47.
[333] Viana, A.R., Rebesco, M. (Eds.), 2007. Economic and Palaeoceanographic Significance of Contourite Deposits, vol. 276. Geological Society of London Special Publication. ISBN electronic: 9781862395244
[334] Visser, M.J., 1980. Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note. Geology, 8, 543-546.
[335] Walker, R.G. 1965. The origin and significance of the internal sedimentary structures of turbidites. Proceedings of the Yorkshire Geological Society, 35, 1–32.
[336] Walker, R.G., 1992. Facies, facies models, and modern stratigraphic concepts. In: Walker, R.G., James, N.P. (Eds.), Facies Models: Response to Sea Level Change, GEOtext 1. Geological Association of Canada, pp. 1-14.
[337] Warme, J. E., Slater, R. A., Cooper, R. A., 1978. Bioerosion in submarinecanyons. In: Stanley, D. J., Kelling, G. K., (eds). Sedimentationin Submarine Canyons, Fans, and Trenches. Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross, Inc., 65-70.
[338] Warrick, J. A., Stevens, A. W. Miller, J. M., and Gelfenbaum, G., 2011. Coastal Processes of the Elwha River Delta. In: Duda, J.J., Warrick, J.A., Magirl, C.S., (Eds.), Coastal Habitats of the Elwha River: Biological and Physical Patterns and Processes Prior to Dam Removal. Chapter: 1. U.S. Geological Survey Scientific Investigations Report 2011-5120. Chapter 5.
[339] Welbon , A. I. F., Brockbank, P. J., Brunsden, D., Olsen, T. S., 2007.Characterizing and producing from reservoirs in landslides:Challenges and opportunities. In: Jolley, S. J., Barr, D., Walsh, J.J., Knipe, R. J., (eds). Structurally complex reservoirs. London:Geological Society Special Publication, 292, 49-74.
[340] Woodcock, N.H., 1979. Sizes of submarine slides and their significance. J. Struct. Geol. 1, 137-142.
[341] Wright, L.D., Nittrouer, C.A., 1995. Dispersal of river sediments in coastal seas: six contrasting cases. Estuaries, 18(3), 494-508.
[342] Wright, S.G., Rathje, E.M., 2003. Triggering mechanisms of slope instability and their relationship to earthquakes and tsunamis. Pure and Applied Geophysics, 160, 1865-1877.
[343] Wunsch, C., Gill, A.E., 1976. Observations of equatorially trapped waves in Pacific sea level variations. Deep-Sea Research Oceanography Abstract, 23 (5), 371-390.
[344] Wüst, G., 1933. Schichtung und Zirkulation des Atlantischen Ozeans. Das Bodenwasser und die Gliederung der Atlantischen Tiefsee. Wiss. Erg. Dt. Atl. Exp. “Mete” (1925e1927) 6(1), 106 pp. In: Olson, B.E. (Ed.), Bottom Water and the Distribution of the Deep Water of the Atlantic, Slessers, M. (translator). US Naval Oceanographic Office, Washington, DC, 145 p.
[345] Xu, J.P., Noble, M.A., Rosenfeld, L.K., 2004. In-situ measurements of velocity structure within turbidity currents. Geophysical Research Letters, 31, L09311. https://doi.org/10.1029/2004GL019718, 2004.
[346] Zenk, W., 2008. Abyssal and contour currents. In: Rebesco, M., Camerlenghi, A. (Eds.), Contourites. Elsevier, Amsterdam, pp. 37-57.
[347] Zhang, LF., Pan, M. & Li, ZL. 2020. 3D modeling of deepwater turbidite lobes: a review of the research status and progress. Pet. Sci. 17, 317–333 (2020). https://doi.org/10.1007/s12182-019-00415-y
[348] Zou, C., Wang, L., Li, Y., Tao, S., Hou, L., 2012. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China. Sedimentary Geology, 265-266: 143-155. |