|
|
Glaciation-induced features or sediment gravity flows - an analytic review |
Mats O. Molén |
Umeå FoU AB, Vallmov 61, S-903 52 Umeå, Sweden |
|
|
Abstract For more than 150 years, geologic characteristics claimed to be evidence for pre-Pleistocene glaciations have been debated. Advancements in recent decades, in understanding features generated by mainly glacial and mass flow processes, are here reviewed. Detailed studies of data offered in support of pre-Pleistocene glaciations have led to revisions that involve environments of mass movements. Similarities and differences between Quaternary glaciogenic and mass movement features are examined, to provide a more systematic methodology for analysing the origins of more ancient deposits. Analyses and evaluation of data are from a) Quaternary glaciogenic sediments, b) formations which have been assigned to pre-Pleistocene glaciations, and c) formations with comparable features associated with mass movements (and occasionally tectonics). Multiple proxies are assembled to develop correct interpretations of ancient strata. The aim is not per se to reinterpret specific formations and past climate changes, but to enable data to be evaluated using a broader and more inclusive conceptual framework. Regularly occurring pre-Pleistocene features interpreted to be glaciogenic, have often been shown to have few or no Quaternary glaciogenic equivalents. These same features commonly form by sediment gravity flows or other non-glacial processes, which may have led to misinterpretations of ancient deposits. These features include, for example, environmental affinity of fossils, grading, bedding, fabrics, size and appearance of erratics, polished and striated clasts and surfaces (“pavements”), dropstones, and surface microtextures. Recent decades of progress in research relating to glacial and sediment gravity flow processes have resulted in proposals by geologists, based on more detailed field data, more often of an origin by mass movements and tectonism than glaciation. The most coherent data of this review, i.e., appearances of features produced by glaciation, sediment gravity flows and a few other geological processes, are summarized in a Diamict Origin Table.
|
Received: 09 November 2021
|
Corresponding Authors:
E-mail address: mats.extra@gmail.com.
|
|
|
|
[1] Abbott D.H., Embley R.W., 1982. Upslope flow of turbidity currents on abyssal hills in the eastern Nares abyssal plain.EOS Transactions, American Geophysical Union, 63, 445. [2] Ager D.V.,1981. The Nature of the Stratigraphical Record, second ed. John Wiley and Sons, New York, 151 pp. [3] Aitken J.D.,1991. Two Late Proterozoic glaciations, Mackenzie Mountains, northwestern Canada.Geology, 19, 445-448. [4] Aitken J.F.,1993. A re-appraisal of supposed iceberg “dump” and “grounding” structures from Pleistocene glaciolacustrine sediments, Aberdeenshire.Quaternary Newsletter, 71, 1-10. [5] Aleksandrov D.,2022. The origin of boulders in the Neoproterozoic of Eastern Sayan Ranges, south-west Siberia: Glacial transport versus winnowed concretions. The Depositional Record, 00, 1-11. https://doi.org/10.1002/dep2.188. [6] Allen P.,1975. Ordovician glacials of the Central Sahara, In: Wright, A.E., Moseley, F. (Eds.), Ice Ages: Ancient and Modern. Seal House Press, Liverpool, pp. 275-286. [7] Allen J.R.L.,1984. Sedimentary Structures: Their Character and Physical Basis. Elsevier, Amsterdam vol. 1, pp. 267-268, vol. 2, pp. 513-519. [8] Alley N.F., Hore S.B., Frakes L.A.,2020. Glaciations at high-latitude Southern Australia during the Early Cretaceous. Australian Journal of Earth Sciences, 67, 1045-1095. https://doi.org/10.1080/08120099.2019.1590457. [9] Ali D.O., Spencer A.M., Fairchild I.J., Chew K.J., Anderton R., Levell B.K., Hambrey M.J., Dove D.,Le Heron, D.P., 2018. Indicators of relative completeness of the glacial record of the Port Askaig Formation, Garvellach Islands, Scotland. Precambrian Research, 319, 65-78. https://doi.org/10.1016/j.precamres.2017.12.005. [10] Aliotta S., Perillo G.M.E., 1987. A sand wave field in the entrance to Bahia Blanca estuary, Argentina.Marine Geology, 76, 1-14. [11] Alonso-Muruaga,P.J., Limarino, C.O., Spalletti, L.A., Piñol, F.C., 2018. Depositional settings and evolution of a fjord system during the Carboniferous glaciation in Northwest Argentina. Sedimentary Geology, 369, 28-45. https://doi.org/10.1016/j.sedgeo.2018.03.002. [12] Alves T.M.,2015. Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review. Marine and Petroleum Geology, 67, 262-285. https://doi.org/10.1016/j.marpetgeo.2015.05.010. [13] Alves T.M., Gamboa D., 2020. Mass transport deposits as markers of local tectonism in extensional basins, In: Kei Ogata, K., Festa, A., Pini, G.A. (Eds.), Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles. Geophysical Monograph 246, American Geophysical Union. John Wiley and Sons, Inc., Washington D.C., pp. 71-90. [14] Amblas D., Gerber T.P., Canals M., Pratson L.F., Urgeles R., Lastras G., Calafat A.M.,2011. Transient erosion in the Valencia Trough turbidite systems, NW Mediterranean Basin. Geomorphology, 130, 173-184. https://doi.org/10.1016/j.geomorph.2011.03.013. [15] Anderson J.B.,1983. Ancient glacial-marine deposits: their spatial and temporal distribution. In: Molnia, B.F. (Ed.), Glacial-Marine Sedimentation, Plenum Press, New York, pp. 3-92. [16] Anderson A.M., McLachlan I.R., 1976. The plant record in the Dwyka and Ecca series (Permian) of the south-western half of the Great Karroo Basin, South Africa.Palaeontologica Africana, 19, 31-42. [17] Andrews S.D., Cornwell D.G., Trewin N.H., Hartley A.J., Archer S.G., 2018. Reply to the discussion on `A 2.3 Million Year Lacustrine Record of Orbital Forcing from the Devonian of Northern Scotland`, Journal of the Geological Society, London, 173, 474-488. Journal of the Geological Society, 175, 563. https://doi.org/10.1144/jgs2017-132. [18] Andrews G.D., McGrady A.T., Brown S.R., Maynard S.M., 2019. First description of subglacial megalineations from the late Paleozoic ice age in southern Africa. PLoS ONE, 14, e0210673. https://doi.org/10.1371/journal.pone.0210673. [19] Aquino C.D., Buso V.V., Faccini U.F., Milana J.P., Paim P.S.G., 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding-line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67, 180-200. https://doi.org/10.1016/j.jsames.2016.02.008. [20] Armentrout J.M.,1983. Glacial lithofacies of the Neogene Yakataga Formation Robinson Mountains, Southern Alaska Coast Range, Alaska. In: Molnia, B.F. (Ed.), Glacial-Marine Sedimentation. Plenum Press, New York, pp. 629-665. [21] Arnaud E.,2012. The paleoclimatic significance of deformation structures in Neoproterozoic successions. Sedimentary Geology, 243-244, 33-56. [22] Arnaud E., Eyles C.H.,2006. Neoproterozoic environmental change recorded in the Port Askaig Formation, Scotland: Climatic vs tectonic controls. Sedimentary Geology, 183, 99-124. https://doi.org/10.1016/j.sedgeo.2005.09.014. [23] Assine M.L., de Santa Ana, H., Veroslavsky, G., Vesely, F.F., 2018. Exhumed subglacial landscape in Uruguay: Erosional landforms, depositional environments, and paleo-ice flow in the context of the late Paleozoic Gondwanan glaciation. Sedimentary Geology, 369, 1-12. https://doi.org/10.1016/j.sedgeo.2018.03.011. [24] Atkins C.B.,2003. Characteristics of Striae and Clast Shape in Glacial and Non-Glacial Environments. Ph.D. thesis. Victoria University of Wellington. [25] Atkins C.B.,2004. Photographic atlas of striations from selected glacial and non-glacial environments. Antarctic Data Series 28. Victoria University of Wellington. [26] Atkins C.B.,2013. Geomorphological evidence of cold-based glacier activity in South Victoria Land, Antarctica. Geological Society, London, Special Publications, 381, 299-318. https://doi.org/10.1144/SP381.18. [27] Baas J.H., Tracey N.D., Peakall J.,2021. Sole marks reveal deep-marine depositional process and environment: Implications for flow transformation and hybrid-event-bed models. Journal of Sedimentary Research, 91, 986-1009. https://doi.org/10.2110/jsr.2020.104. [28] Bahlburg H., Dobrzinski N., 2011. A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. In: Arnaud, E., Halverson, G.P., Shields-Zhou, G. (Eds.), The Geological Record of Neoproterozoic Glaciations, Geological Society, London, Memoirs, 36, pp. 81-92. https://doi.org/10.1144/M36.6. [29] Bai H., Kuang H., Liu Y., Peng N., Chen X., Wang Y.,2020. Marinoan-aged red beds at Shennongjia, South China: Evidence against global-scale glaciation during the Cryogenian. Palaeogeography, Palaeoclimatology, Palaeoecology, 559, 109967. https://doi.org/10.1016/j.palaeo.2020.109967. [30] Bailey R.A., Huber K.N., Curry R.R., 1990. The diamicton at Deadman Pass, Central Sierra Nevada, California: A residual lag and colluvial deposit, not a 3 Ma glacial till.GSA Bulletin, 102, 1165-1173. [31] Baioumy H., Anuar M.N.A.B., Nordin M.N.M., Arifin M.H., Al-Kahtany K., 2020. Source and origin of Late Paleozoic dropstones from Peninsular Malaysia: First record of Mississippian glaciogenic deposits of Gondwana in Southeast Asia. Geological Journal, 55, 6361-6375. https://doi.org/10.1002/gj.3809. [32] Baker V.R., Kochel C., 1979. Martian channel morphology: Maja and Kasei Valles.Journal of Physical Research, 84, 7961-7983. [33] Baker V.R., Milton D.J., 1974. Erosion by catastrophic floods on Mars and Earth.Icarus, 23, 27-41. [34] Barbolini N.,2014. Palynostratigraphy of the South African Karoo Supergroup and Correlations with Coeval Gondwanan Successions. Ph.D. thesis. University of the Witwatersrand, Johannesburg. [35] Barbolini N., Rubidge B., Bamford M.K.,2018. A new approach to biostratigraphy in the Karoo retroarc foreland system: utilising restricted-range palynomorphs and their first appearance datums for correlation. Journal of African Earth Sciences, 140, 114-133. https://doi.org/10.1016/j.jafrearsci.2017.11.031. [36] Batchelor C.L., Montelli A., Ottesen D., Evans J., Dowdeswell E.K., Christie F.D.W., Dowdeswell, J.A., 2020. New insights into the formation of submarine glacial landforms from high-resolution Autonomous Underwater Vehicle data. Geomorphology, 370, 107396. https://doi.org/10.1016/j.geomorph.2020.107396. [37] Bauch D., Hölemann J., Andersen N., Dobrotina E., Nikulina A., Kassens H., 2011. The Arctic shelf regions as a source of freshwater and brine-enriched waters as revealed from stable oxygen isotopes. Polarforschung, 80, 127-140. https://doi.org/10.2312/polarforschung.80.3.127. [38] Bauska T.K., Baggenstos D., Brook E.J., Mix A.C., Marcott S.A., Petrenko V.V., Schaefer H., Severinghaus J.P., Lee J.E., 2016. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. PNAS, 113, 3465-3470. https://doi.org/10.1073/pnas.1513868113. [39] Bechstädt T., Jäger H., Rittersbacher A., Schweisfurth B., Spence G., Werner G., Boni M.,2018. The Cryogenian Ghaub Formation of Namibia - New insights into Neoproterozoic glaciations. Earth-Science Reviews, 177, 678-714. https://doi.org/10.1016/j.earscirev.2017.11.028. [40] Bell D., Hodgson D.M., Pontén A.S.M., Hansen L.A.S., Flint S.S., Kane I.A., 2020. Stratigraphic hierarchy and three dimensional evolution of an exhumed submarine slope channel system. Sedimentology, 67, 3259-3289. https://doi.org/10.1111/sed.12746. [41] Bengtson S., Sallstedt T., Belivanova V., Whitehouse M., 2017. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biology, 15, e2000735. https://doi.org/10.1371/journal.pbio.2000735. [42] Benn D.I., Evans D.J.A., 1996. The interpretation and classification of subglacially-deformed materials. Quaternary Science Reviews, 15, 23-52. https://doi.org/10.1016/0277-3791(95)00082-8. [43] Bennett M.R., Bullard J.E., 1991. Correspondence: Iceberg tool marks: An example from Heinabergsjökull, southeast Iceland. Journal of Glaciology, 37, 181-183. [44] Bennett M.R., Doyle P., Mather A.E., Woodfin J.L., 1994. Testing the climatic significance of dropstones: an example from southeast Spain.Geological Magazine, 131, 845-848. [45] Bennett M.R., Doyle P., Mather A.E., 1996. Dropstones: their origin and significance.Palaeogeography, Palaeoclimatology, Palaeoecology, 121, 331-339. [46] Bennett M.R., Waller R.I., Midgley N.G., Huddart D., Gonzalez S., Cook S.J., Tomio A., 2003. Subglacial deformation at sub-freezing temperatures? Evidence from Hagafellsjökull-Eystri, Iceland.Quaternary Science Reviews, 22, 915-923. [47] Bernardi M., Petti F.M., Benton M.J.,2018. Tetrapod distribution and temperature rise during the Permian-Triassic mass extinction. Proceedings of the Royal Society B, 285, 20172331. https://doi.org/10.1098/rspb.2017.2331. [48] Bernhardt A., Schwanghart W., 2021. Where and why do submarine canyons remain connected to the shore during sea-level rise? Insights from global topographic analysis and Bayesian regression. Geophysical Research Letters, 48, e2020GL092234. https://doi.org/10.1029/2020GL092234. [49] Best J.L.,1992. Sedimentology and event timing of a catastrophic volcaniclastic mass flow, Volcan Hudson, Southern Chile.Bulletin of Volcanology, 54, 299-318. [50] Bestmann M., Rice A.H.N., Langenhorst F., Grasemann B., Heidelbach F., 2006. Subglacial bedrock welding associated with glacial earthquakes.Journal of the Geological Society, 163, 417-420. [51] Bickert T., Heinrich R., 2011. Climate records of deep-sea sediments: towards the Cenozoic ice house. In: Hüneke, H., Mulder, T. (Eds.), Developments in Sedimentology 63. Elsevier, Amsterdam, pp. 793-823. [52] Bielenstein H.U., Eisbacher G.H., 1969. Tectonic interpretation of elastic-strain-recovery measurements at Elliot Lake, Ontario. Department of Energy, Mines and Resources Ottowa, Report R210, 64 pp. [53] Bigarella J.J., Salamuni R., Fuck R.A., 1967. Striated surfaces and related features, developed by the Gondwana ice sheets (State of Paraná, Brazil).Palaeogeography, Palaeoclimatology, Palaeoecology, 3, 265-276. [54] Biju-Duval, B., Deynoux, M., Rognon, P., 1981. Late Ordovician tillites of the Central Sahara. In: Hambrey, M.J., Harland, W.B. (Eds.), Earth´s Pre-Pleistocene Glacial Record. Cambridge University Press, Cambridge, pp. 99-107. [55] Binda P.L., Van Eden J.G., 1972. Sedimentological evidence on the origin of the Precambrian Great Conglomerate (Kundelungu Tillite), Zambia. Palaeogeography, Palaeoclimatology, Palaeoecology, 12, 151-168. [56] Bjørlykke K.,1967. The Eocambrian “Reusch Moraine” at Bigganjargga and the geology around Varangerfjord; Northern Norway.Norges Geologiske Undersøkelse, 251, 18-44. [57] Black R.F.,1976. Periglacial features indicative of permafrost: Ice and soil wedges.Quaternary Research, 6, 3-26. [58] Blatt H.,1992. Sedimentary Petrology, second ed. W.H. Freedman and Co, New York, pp. 56-58. [59] Blauw M.,2012. Out of tune: the dangers of aligning proxy archives.Quaternary Science Reviews, 36, 38-49. [60] Blomenkemper P., Kerp H., Bomfleur B., 2020. A treasure trove of peculiar Permian plant fossils. PalZ, 94, 409-412. https://doi.org/10.1007/s12542-019-00489-4. [61] Bose P.K., Mukhopadhyay G., Bhattacharyya H.N., 1992. Glaciogenic coarse clastics in a Permo-Carboniferous bedrock through in India: A sedimentary model.Sedimentary Geology, 76, 79-97. [62] Boulton G.S.,1990. Sedimentary and sea level changes during glacial cycles and their control on glacimarine facies architecture. In: Dowdeswell, J.A., Scource, J.D. (Eds.), Glacimarine Environments: Processes and Sediments. Geological Society, London, Special Publications, 53, pp. 15-52. [63] Bourgeois J.,2009. Geologic effects and records of tsunamis. In: Robinson. A.R., Bernard, E.N. (Eds.), The Sea, vol 15, Tsunamis. Harvard University Press, Cambridge, pp 53-91. [64] Bowen R.L.,1969. Late Paleozoic glaciations - the Parana Basin of South America. In: Amos, A.J. (Ed.), Gondwana Stratigraphy. IUGS Symposium in Buenos Aires 1967, UNESCO, pp. 589-597. [65] Bronikowska M.,Pisarska-Jamroży, M., van Loon, A.J.T., 2021. Dropstone deposition: Results of numerical process modeling of deformation structures, and implications for the reconstruction of the water depth in shallow lacustrine and marine successions. Journal of Sedimentary Research, 91, 507-519. https://doi.org/10.2110/jsr.2020.111. [66] Broster B.E., Seaman A.A., 1991. Glaciogenic rafting of weathered granite: Charlie Lake, New Brunswick. Canadian Journal of Earth Sciences, 28, 649-654. https://doi.org/10.1139/e91-056. [67] Bryan M.,1983. Of shales and schists and ignimbrites, and other Rocky things (a report on the talks given at the 1983 Conference at Bradford University). OUGS Journal, 4 (2), 31-53 (Review of Prof. P. Allens lecture: Ice Ages in the Central Sahara, pp. 51-53). [68] Bryant, E.A, Young, R.W., 1996. Bedrock-sculpting by tsunami, south coast New South Wales, Australia. Journal of Geology, 104, 565-582. [69] Bukhari S., Eyles N., Sookhan S., Mulligan R., Paulen R., Krabbendam M., Putkinen N., 2021. Regional subglacial quarrying and abrasion below hard-bedded palaeo-ice streams crossing the Shield - Palaeozoic boundary of central Canada: the importance of substrate control. Boreas, , 781-805. https://doi.org/10.1111/bor.12522. [70] Burr D.M., Grier J.A., McEwen A.S., Keszthelyi L.P., 2002. Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars.Icarus, 159, 53-73. [71] Bussert R.,2010. Exhumed erosional landforms of the Late Palaeozoic glaciation in northern Ethiopia: Indicators of ice-flow direction, palaeolandscape and regional ice dynamics. Gondwana Research, 18, 356-369. https://doi.org/10.1016/j.gr.2009.10.009. [72] Bussert R.,2014. Depositional environments during the Late Palaeozoic ice age (LPIA) in northern Ethiopia, NE Africa. Journal of African Earth Sciences, 99, 386-407. https://doi.org/10.1016/j.jafrearsci.2014.04.005. [73] Butler, R.W.H, McCaffrey, W.D., 2010. Structural evolution and sediment entrainment in mass-transport complexes: outcrop studies from Italy. Journal of the Geological Society, 167, 617-631. https://doi.org/10.1144/0016-76492009-041. [74] Butler R.W.H., Tavarnelli E., 2006. The structure and kinematics of substrate entrainment into high-concentration sandy turbidites: a field example from the Gorgoglione ´flysch´ of southern Italy. Sedimentology, 53, 655-670. https://doi.org/10.1111/j.1365-3091.2006.00789.x. [75] Caetano-Filho,S., Sansjofre, P., Ader, M., Paula-Santos, G.M., Guacaneme, C., Babinski, M., Bedoya-Rueda, C., Kuchenbecker, M., Reis, H.L.S., Trindade, R.I.F., 2021. A large epeiric methanogenic Bambuí sea in the core of Gondwana supercontinent? Geoscience Frontiers, 12, 203-218. https://doi.org/10.1016/j.gsf.2020.04.005. [76] Cahen L., Lepersonne J., 1981. Proterozoic diamictites of Lower Zaire. In: Hambrey, M.J., Harland, W.B. (Eds.), Earth´s Pre-Pleistocene Glacial Record. Cambridge University Press, Cambridge, pp.153-157. [77] Canals M., Puig P., de Madron X.D., Heussner S., Palanques A., Fabres J., 2006. Flushing submarine canyons. Nature, 444, 354-357. https://doi.org/10.1038/nature05271. [78] Capra L., Macias J.L., 2002. The cohesive Naranjo debris-flow deposit (10 km3): A dam breakout flow derived from the Pleistocene debris-avalanche deposit of Nevado de Colima Volcano (México). Journal of Volcanology and Geothermal Research, 117, 213-235. [79] Caputo M.V., Crowell J.C., 1985. Migration of glacial centers across Gondwana during Paleozoic Era.GSA Bulletin, 96, 1020-1036. [80] Caputo, M.V., Santos, R.O.B. dos, 2020. Stratigraphy and ages of four Early Silurian through Late Devonian, Early and Middle Mississippian glaciation events in the Parnaíba Basin and adjacent areas, NE Brazil. Earth-Science Reviews, 207, 103002. https://doi.org/10.1016/j.earscirev.2019.103002. [81] Cardona S., Wood L.J., Dugan B., Jobe Z., Strachan L.J., 2020. Characterization of the Rapanui mass-transport deposit and the basal shear zone: Mount Messenger Formation, Taranaki Basin, New Zealand. Sedimentology, 67, 2111-2148. https://doi.org.10.1111/sed.12697. [82] Caron V., .Mahieux G., Ekomane E., Moussango P., Babinski M.,2011. One, two or no record of Late Neoproterozoic glaciation in South-East Cameroon? Journal of African Earth Sciences, 59, 111-124. https://doi.org/10.1016/j.jafrearsci.2010.09.004. [83] Carter R. M.,1975. A discussion and classification of subaqueous mass-transport with particular application to grain-flow, slurry-flow, and fluxoturbidites.Earth-Science Reviews, 11, 145-177. [84] Carto S.L., Eyles N., 2012a. Identifying glacial influences on sedimentation in tectonically-active, mass flow dominated arc basins with reference to the Neoproterozoic Gaskiers glaciation (c. 580 Ma) of the Avalonian-Cadomian Orogenic Belt. Sedimentary Geology, 261-262, 1-14. [85] Carto S.L., Eyles N., 2012b. Sedimentology of the Neoproterozoic (c. 580 Ma) Squantum “Tillite,” Boston Basin, USA: Mass flow deposition in a deep-water arc basin lacking direct glacial influence.Sedimentary Geology, 269, 1-14. [86] Cecioni G.O.,1981. Cretaceous Lago Sofia Formation, Chilean Patagonia. In: Hambrey, M.J., Harland, W.B. (Eds.), Earth´s Pre-Pleistocene Glacial Record. Cambridge University Press, Cambridge, p. 834. [87] Cerda I.A., Carabajal A.P., Salgado L., Coria R.A., Reguero M.A., Tambussi, C.P, Moly J.J., 2012. The first record of a sauropod dinosaur from Antarctica.Naturwissenschaften, 99, 83-87. [88] Cernusak L.A., Winter K., Aranda J., Turner B.L., 2008. Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (δ13C and δ18O) of seedlings grown in a tropical environment. Plant Physiology, 148, 642-659. www.plantphysiol.org/cgi/doi/10.1104/pp.108.123521. [89] Cesta J.M.,2015. Soft-sediment slickensides in the Stockton Formation, Stockton, New Jersey. Geological Society of America, Northeastern Section - 50th Annual Meeting (23-25 March 2015), Paper 45-1. https://gsa.confex.com/gsa/2015NE/finalprogram/abstract_253490.htm. [90] Charrier R.,1986. The Gondwana glaciation in Chile: Description of alleged glacial deposits and paleogeographic conditions bearing on the extension of the ice cover in Southern South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 56, 151-175. https://doi.org/10.1016/0031-0182(86)90111-2. [91] Chen X., Kuang H., Liu Y., Wang Y., Yang Z., Vandyk T.M.,Le Heron, D.P., Wang, S., Geng, Y., Bai, H., Peng, N., Xia, X., 2020. Subglacial bedforms and landscapes formed by an ice sheet of Ediacaran-Cambrian age in west Henan, North China. Precambrian Research, 344, 105727. https://doi.org/10.1016/j.precamres.2020.105727. [92] Chen X., Kuang H., Liu Y.,Le Heron, D.P., Wang, Y., Peng, N., Wang, Z., Zhong, Q., Yu, H., Chen, J., 2021. Revisiting the Nantuo Formation in Shennongjia, South China: A new depositional model and multiple glacial cycles in the Cryogenian. Precambrian Research, 356,106132. https://doi.org/10.1016/j.precamres.2021.106132. [93] Clark D.L., Hanson A., 1983. Central Arctic Ocean sediment texture: A key to ice transport mechanisms. In: Molnia, B.F. (Ed.), Glacial-Marine Sedimentation. Plenum Press, New York, pp. 301-330. [94] Clark J. D., Stanbrook D.A., 2001. Formation of large scale shear structures during deposition from high density turbidity currents, Grès d´Annot Formation, South East France. In: McCaffrey, W., Kneller, B.and Peakall, J. (Eds.), Particulate Gravity Currents. International Association of Sedimentologists, Special Publication 31, Blackwell Science Ltd., London, pp. 219-232. [95] Clark P.U.,1991. Striated clast pavements: Products of deforming subglacial sediment?Geology, 19, 530-533. [96] Clarke S., Hubble T., Airey D., Yu P., Boyd R., Keene J., Exon N., Gardner J., Shipboard Party SS12/2008, 2012. Submarine landslides on the upper southeast Australian passive continental margin - preliminary findings. In:Yamada, Y., Kawamura. K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M. (Eds.), Submarine Mass Movements and Their Consequences. Springer International Publication. Switzerland, pp. 55-66. https://doi.org/10.1007/978-94-007-2162-3. [97] Coats R.P., Preiss W.V., 1987. Stratigraphy of the Umberatana Group. In: Drexel, J.F. (Ed.), Preiss, W.V. (Compiler), The Adelaide Geosyncline - Late Proterozoic Stratigraphy, Sedimentation, Palaeontology and Tectonics. Bulletin of the Geological Survey of South Australia, 53, pp. 125-209. [98] Coles R.J.,2014. The Cross-sectional Characteristics of Glacial Valleys and Their Spatial Variability. Ph.D. thesis. Geography Department, University of Sheffield, 335 pp. [99] Covault J.A., Romans B.W., 2009. Growth patterns of deep-sea fans revisited: Turbidite-system morphology in confined basins, examples from the California Borderland.Marine Geology, 265, 51-66. [100] Covault J.A., Sylvester Z., Hubbard S.M., Jobe Z.R., Sech R.P.,2016. The stratigraphic record of submarine-channel evolution. The Sedimentary Record, 14, 4-11. https://doi.org/10:2110/sedred.2016.3. [101] Cowan E.A., Powell R.D., 1990. Suspended sediment transport and deposition of cyclically interlaminated sediment in a temperate glacial fjord, Alaska, U.S.A. In: Dowdeswell, J.A., Scource, J.D. (Eds.), Glacimarine Environments: Processes and Sediments. Geological Society, London, Special Publication, 53, pp. 75-89. [102] Craddock J.P., Ojakangas R.W., Malone D.V., Konstantinou A., Mory A., Bauer W., Thomas R.J., Affinati S.C., Pauls K., Zimmerman U., Botha G.,Rochas-Campos, A., dos Santos, P.R., Tohver, E., Riccomini, C., Martin, J., Redfern, J., Horstwood, M., Gehrels, G., 2019. Detrital zircon provenance of Permo-Carboniferous glacial diamictites across Gondwana. Earth-Science Reviews, 192, 285-316. https://doi.org/10.1016/j.earscirev.2019.01.014. [103] Creixell C., Sepúlveda F., Álvarez J., Vásquez P., Velásquez R.,2021. The Carboniferous onset of subduction at SW Gondwana revisited: Sedimentation and deformation processes along the late Paleozoic forearc of north Chile (21°-33° S). Journal of South American Earth Sciences, 107, 103149. https://doi.org/10.1016/j.jsames.2020.103149. [104] Crosby B.T., Whipple K.X., Gasparini N.M., Wobus C.W.2007. Formation of fluvial hanging valleys: Theory and simulation. Journal of Geophysical Research, 112, F03S10. https://doi.org/10.1029/2006JF000566. [105] Crowell J.C.,1957. Origin of pebbly mudstones.Bulletin of the Geological Society of America, 68, 993-1010. [106] Cuneo R.N., Isbell J., Taylor E.D., Taylor T.M., 1993. TheGlossopteris flora from Antarctica: taphonomy and paleoecology. Comptes Rendus XII ICC-P, 2, 13-40. [107] Da J., Zhang Y.G., Li G., Meng X., Ji J., 2019. Low CO2 levels of the entire Pleistocene epoch. Nature Communications, 10, 4342. https://doi.org/10.1038/s41467-019-12357-5. [108] Da Silva A.C., Dekkers M.J., De Vleeschouwer D., Hladil J., Chadimova L., Slavík L., Hilgen F.J., 2019. Millennial-scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world: Reply. Geology, 47, e489-e490. https://doi.org/10.1130/G46732Y.1. [109] Daily B., Gostin V.A., Nelson C.A., 1973. Tectonic origin for an assumed glacial pavement of Late Proterozoic age, South Australia. Journal of the Geological Society of Australia, 20, 75-78. https://doi.org/10.1080/14400957308527896. [110] Dakin N., Pickering K.T., Mohrig D., Bayliss N.J., 2013. Channel-like features created by erosive submarine debris flows: field evidence from the Middle Eocene Ainsa Basin, Spanish Pyrenees.Marine and Petroleum Geology, 41, 62-71. [111] Dal Cin, R., 1968. “Pebble clusters”: Their origin and utilization in the study of paleocurrents. Sedimentary Geology, 2, 233-241. https://doi.org/10.1016/0037-0738(68)90001-8. [112] Dasgupta P.,2003. Sediment gravity flow - the conceptual problems.Earth-Science Reviews, 62, 265-281. [113] De Blasio F.V., Engvik L.E., Elverhøi A., 2006. Sliding of outrunner blocks from submarine landslides. Geophysical Research Letters, 33, L06614. https://doi.org/10.1029/2005GL025165. [114] de Lange, W.P., de Lange, P.J., Moon, V.G., 2006. Boulder transport by waterspouts: An example from Aorangi Island, New Zealand. Marine Geology, 230,115-125. https://doi.org/10.1016/j.margeo.2006.04.006. [115] de Wit, M.C.J., 2016a. Dwyka eskers along the northern margin of the main Karoo Basin. In: Linol, B., de Wit, M.J. (Eds.), Origin and Evolution of the Cape Mountains and Karoo Basin, Regional Geology Reviews. Springer International Publishing, Switzerland, pp. 87-99. https://doi.org/10.1007/978-3-319-40859-0_9. [116] de Wit, M.C.J., 2016b. Early Permian diamond-bearing proximal eskers in the Lichtenburg/Ventersdorp area of the North West Province, South Africa. South African Journal of Geology, 119, 585-606. https://doi.org/10.2113/gssajg.119.4.585. [117] Decombeix A.-L., Durieux T., Harper C.J., Serbet R., Taylor E.L., 2021. A Permian nurse log and evidence for facilitation in high latitude Glossopteris forests. Lethaia, 54, 96-105. https://doi.org/10.1111/let.12386. [118] Del Cortona A., Jackson C.J., Bucchini F., Van Bel M., D’hondt S., Škaloud P., Delwiche C.F., Knoll A.H., Raven J.A., Verbruggen H., Vandepoele K., De Clerck O., Leliaert F., 2020, Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. PNAS, 117, 2551-2559. https://doi.org/10.1073/pnas.1910060117. [119] Delpomdor F., Eyles N., Tack L., Préat A.,2016. Pre- and post-Marinoan carbonate facies of the Democratic Republic of the Congo: Glacially- or tectonically-influenced deep-water sediments? Palaeogeography, Palaeoclimatology, Palaeoecology, 457, 144-157. https://doi.org/10.1016/j.palaeo.2016.06.014. [120] Denis M., Guiraud M., Konaté M., 2010. Subglacial deformation and water-pressure cycles as a key for understanding ice stream dynamics: evidence from the Late Ordovician succession of the Djado Basin (Niger). International Journal of Earth Sciences, 99, 1399-1425. https://doi.org/10.1007/s00531-009-0455-z. [121] Derbyshire E.,1979. Glaciers and environment. In: John, B.S. (Ed.), The Winters of the World. Davies and Charles, Newton Abbot, pp. 58-106. [122] DeVore, M.L., Pigg, K.B., 2020. The Paleocene-Eocene thermal maximum: plants as paleothermometers, rain gauges, and monitors. In: Martinetto, E., Tschopp, E., Gastaldo, R. (Eds.), Nature through Time. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham, pp. 109-128. https://doi.org/10.1007/978-3-030-35058-1_4. [123] Dey S., Dasgupta P., Das K., Matin A., 2020. Neoproterozoic Blaini Formation of Lesser Himalaya, India: fiction and fact. GSA Bulletin, 132, 2267-2281. https://doi.org/10.1130/B35483.1. [124] Deynoux M.,1983. Late Precambrian and Upper Ordovician glaciations in the Taoudeni Basin, West Africa. In: Deynoux, M. (Ed.), Till Mauretania 83. Centre National de la Recherche Scientifique, Paris, pp. 44-86. [125] Deynoux M.,1985a. Les Glaciations du Sahara.La Recherche, 16, 986-997. [126] Deynoux M.,1985b. Terrestrial or waterlain glacial diamictites? Three case studies from the Late Precambrian and Late Ordovician glacial drifts in West Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 51, 97-141. https://doi.org/10.1016/0031-0182(85)90082-3. [127] Deynoux M., Ghienne J.-F., 2004. Late Ordovician glacial pavements revisited: a reappraisal of the origin of striated surfaces. Terra Nova, 16, 95-101. https://doi.org/10.1111/j.1365-3121.2004.00536.x. [128] Deynoux M., Ghienne J.-F., 2005. Reply. Late Ordovician glacial pavements revisited: a reappraisal of the origin of striated surfaces.Terra Nova, 17, 488-491. [129] Deynoux M., Trompette R., 1976. Discussion: Late Precambrian mixtites: glacial and/or nonglacial? Dealing especially with the mixtites of West Africa.American Journal of Science, 276, 1302-1315. [130] Deynoux M., Trompette R., 1981a. Late Ordovician Tillites of the Taoudeni Basin, West Africa. In: Hambrey, M.J., Harland, W.B. (Eds.), Earth´s Pre-Pleistocene Glacial Record. Cambridge University Press, Cambridge, pp. 89-96. [131] Deynoux M., Trompette R., 1981b. Late Precambrian tillites of the Taoudeni Basin, West Africa. In: Hambrey, M.J., Harland, W.B. (Eds.), Earth´s Pre-Pleistocene Glacial Record. Cambridge University Press, Cambridge, pp. 123-131. [132] Dietrich P., Hofmann A., 2019. Ice-margin |
|
|
|