|
|
Microfacies and paleoenvironment of microbialites of the Cambrian (Stage 4) Qingxudong Formation in the Huayuan area, northwestern Hunan Province, southern China |
Zhong-Tang Sua,b,c,*, De-Min Zhangd, Jie Tangc, Pei-Jie Sunc, Zhen-Feng Luoc, Hui Mac |
aState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China; bKey Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resource, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China; cInstitute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China; dSinopec Petroleum Exploration and Production Research Instutite, Beijing 100083, China |
|
|
Abstract After the the extinction of Archaeocyatha (sponges), microbial bioherms were well developed in the lower Cambrian of the Yangtze cratonic basin, especially in the Qingxudong Formation (Cambrian (Stage 4)) of the Huayuan area, northwestern Hunan Province, southern China. Herein, four sections from this area were chosen for investigating and analyzing their microfacies and depositional environment. Twelve microfacies types were recognized through petrographic analysis of textural attributes and calcimicrobes (including Epiphyton, Renalcis, Girvanella and Kenella), respectively as: laminated calcareous mudstone (MF1), algal wackestone (MF2), intraclastic grainstone (MF3), algal intrasparrudite (MF4), oolitic algal intrasparrudite (MF5), sparry oolitic grainstone (MF6), Epiphyton framestone (MF7), Renalcis bafflestone (MF8), Kenella bafflestone (MF9), Girvanella boundstone (MF10), thrombolitic boundstone (MF11), and dolomite (MF12). These microfacies represent four major depositional environments: carbonate ramp, carbonate platform, slope and tidal flat. Calcimicrobes played an important role in the transition from carbonate ramp to platform, while the evolution from ramp to tidal flat must be ascribed to sea-level fall during the Cambrian Age 4.
|
Received: 18 January 2023
|
Corresponding Authors:
*E-mail address: suzhongtang2012@cdut.cn (Z.-T. Su).
Peer review under responsibility of China University of Petroleum (Beijing).
|
|
|
|
[1] Adachi N., Ezaki Y., Liu J.B.,2014. The late early Cambrian microbial reefs immediately after the demise of archaeocyathan reefs, Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 407, 45-55. https://doi.org/10.1016/j.palaeo.2014.04.013. [2] Babcock L.E., Peng S.C., Brett C.E., Zhu M.Y., Ahlberg P., Bevis M., Robison R.A.,2015. Global climate, sea level cycles, and biotic events in the Cambrian Period. Palaeoworld, 24(1), 5-15. https://doi.org/10.1016/j.palwor.2015.03.005. [3] Chen Z.Q., Tu C.Y., Pei Y., Ogg J., Fang Y.H., Wu S.Q., Feng X.Q., Huang Y.G., Guo Z., Yang H.,2019. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic. Earth-Science Reviews, 189, 21-50. https://doi.org/10.1016/j.earscirev.2019.01.015. [4] Cordie D.R., Dornbos S.Q., Marenco P.J., 2020. Evidence for a local reef eclipse in a shallow marine carbonate environment following the regional extinction of archaeocyaths in Laurentia (Stage 4, Cambrian). Facies, 66, 5. https://doi.org/10.1007/s10347-019-0589-9. [5] Duan T.Z., Zeng Y.F., Gao Z.Z., 1988. Analysis of tectonic evolution of paleocontinental margin in South China based on sedimentary history.Oil and Gas Geology, 9(4), 410-420 (in Chinese with English abstract). [6] Dunham R.J.,1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (Ed.), Classification of Carbonate Rocks — A Symposium. AAPG Memoir, 1, 108-121. [7] Embry A.F., Klovan J.E., 1971. A Late Devonian reef tract on northeastern Banks Islands, N.W.T. Bulletin of Canadian Petroleum Geology, 19(4), 730-781. https://doi.org/10.35767/gscpgbull.19.4.730. [8] Feng Z.Z., Peng Y.M., Jin Z.K., Jiang P.L., Bao Z.D., Luo Z., Ju T.Y., Tian H.Q., Wang H., 2001. Lithofacies Paleogeography of the Cambrian and Ordovician in South China. Geological Publishing House, Beijing, 364 pp. (in Chinese). [9] Flügel E.,2010. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application (Second Edition). Springer-Verlag, Berlin, Heidelberg, New York, pp. 657-723. [10] Friedman G.M.,1995. The arid peritidal complex of Abu Dhabi: A historical perspective. Carbonates and Evaporites, 10(1), 2-7. https://doi.org/10.1007/BF03175237. [11] Haq B.U., Schutter S.R., 2008. A chronology of Paleozoic sea-level changes. Science, 322(5898), 64-68. https://doi.org/10.1126/science.1161648. [12] Ishikawa T., Ueno Y., Shu D.G., Li Y., Han J., Guo J.F., Yoshida N., Maruyama S., Komiya T.,2014. The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area, South China. Gondwana Research, 25(3), 1045-1056. https://doi.org/10.1016/j.gr.2013.03.010. [13] Kaya A., Friedman G.M., 1997. Sedimentation and facies analysis of the Girvanella-constituted oncolitic shoals and associated lithofacies in the Middle Ordovician Antelope Valley Limestone, central Nevada, USA. Carbonates and Evaporites, 12(1), 134-156. https://doi.org/10.1007/BF03175813. [14] Kuang W.L., Yang S.X., Yu P.R., Lao K.T.,2008. Sedimentary characteristics and geological significance of turbidites in the lower Cambrian Qingxudong Formation at Huayuan county, northwestern Hunan. Chinese Journal of Geology, 43(2), 347-358. https://doi.org/10.3321/j.issn:0563-5020.2008.02.010 (in Chinese with English abstract). [15] Lee J.H., Riding R.,2018. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs. Earth-Science Reviews, 181, 98-121. https://doi.org/10.1016/j.earscirev.2018.04.003. [16] Liu J.F., Peng J., Wei Z.H., Song Z.R., Pu H.G., Xiong C., Luo X., Zhang X.W., 2012. Sedimentary features of Qingxudong Formation in southeast Sichuan and their control on reservoirs.Earth Science Frontiers, 19(4), 239-246 (in Chinese with English abstract). [17] Liu M., Mao D.L., Zhou X.L., di Zhou, H., 2022. Tectonic features of deposition and faults of Danaopo mining area in western Hunan and the controlling effect on Pb-Zn mineralization. Northwestern Geology, 55(1), 129-141. https://doi.org/10.19751/j.cnki.61-1149/p.2022.01.010 (in Chinese with English abstract). [18] Liu W.J.,1985. Evolution of Hunan-Guizhou fault zone and the features of mineralization.Geological Review, 31(3), 224-231 (in Chinese with English abstract). [19] Liu W.J., Zheng R.C.,2000. Characteristics and movement of ore-forming fluids in the Huayuan lead-zinc deposit. Mineral Deposits, 19(2), 173-181. https://doi.org/10.3969/j.issn.0258-7106.2000.02.009 (in Chinese with English abstract). [20] Ma Z.X., Liu W., Zhang W.P., Li B., 2013. Transition of carbonate ramp to rimmed platform: A case study from the lower Cambrian Qingxudong Formation at the Majiang section in eastern Guizhou.Geological Science and Technology Information, 32(4), 43-49 (in Chinese with English abstract). [21] Machel H.G.,2004. Concepts and models of dolomitization: A critical reappraisal. In: Braithwaite, C.J.R., Rizzi, G., Darke, G. (Eds.), The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society, London, Special Publications, 235, 7-63. https://doi.org/10.1144/GSL.SP.2004.235.01.02. [22] Mutti M., Hallock P., 2003. Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints. International Journal of Earth Sciences, 92(4), 465-475. https://doi.org/10.1007/s00531-003-0350-y. [23] Nielsen A.T., Schovsbo N.H.,2015. The regressive Early-Mid Cambrian ‘Hawke Bay Event' in Baltoscandia: Epeirogenic uplift in concert with eustasy. Earth-Science Reviews, 151, 288-350. https://doi.org/10.1016/j.earscirev.2015.09.012. [24] Pomar L., Bassant P., Brandano M., Ruchonnet C., Janson X.,2012. Impact of carbonate producing biota on platform architecture: Insights from Miocene examples of the Mediterranean region. Earth-Science Reviews, 113(3-4), 186-211. https://doi.org/10.1016/j.earscirev.2012.03.007. [25] Pratt B.R., Spincer B.R., Wood R.A., Zhuravlev A.Y., 2001. Ecology and evolution of Cambrian reefs. In: Zhuravlev, A.Y., Riding, R. (Eds.), Ecology of the Cambrian Radiation. Columbia University Press, New York, pp. 254-274. [26] Qi Y.A., Zhang X.Y., Dai M.Y., Wang M., 2017. Girvanella fossils and their microstructure from Cambrian microbialites of western Henan.Acta Palaeontologica Sinica, 56(2), 154-167 (in Chinese with English abstract). [27] Riding R.,1975. Girvanella and other algae as depth indicators. Lethaia, 8(2), 173-179. https://doi.org/10.1111/j.1502-3931.1975.tb01310.x. [28] Riding R.,2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47(s1), 179-214. https://doi.org/10.1046/j.1365-3091.2000.00003.x. [29] Riding R.,2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185(3-4), 229-238. https://doi.org/10.1016/j.sedgeo.2005.12.015. [30] Scotese C.R.,2021. An atlas of Phanerozoic paleogeographic maps: The seas come in and the seas go out. Annual Review of Earth and Planetary Sciences, 49, 679-728. https://doi.org/10.1146/annurev-earth-081320-064052. [31] Shen J.W., Yu C.M., Bao H.M., 1997. A Late-Devonian (Famennian) Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China. Facies, 37(1), 195-209. https://doi.org/10.1007/BF02537379. [32] Shu L.S., Yao J.L., Wang B., Faure M., Charvet J.,Chen Y., 2021. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth-Science Reviews, 216, 1-30. https://doi.org/10.1016/j.earscirev.2021.103596. [33] Sibley D.F., Gregg J.M., 1987. Classification of dolomite rock textures. Journal of Sedimentary Petrology, 57(6), 967-975. https://doi.org/10.1306/212F8CBA-2B24-11D7-8648000102C1865D. [34] Steiner M., Li G.X., Qian Y., Zhu M.Y., Erdtmann B.D.,2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2), 67-99. https://doi.org/10.1016/j.palaeo.2007.03.046. [35] Sun Y.X., Lin W.Q., Zhou Z.D., 1985. Algae fossil assemblage, sedimentary environment and mineralization of lower Cambrian Qingxudong Formation, Yutang, Huayuan, Hunan.Journal of Chengdu College of Geology, 1, 52-62 (in Chinese with English abstract). [36] Tang Z.Y., Deng F., Li K., Zhao W.Q., Jin S.C., 2013. Lithofacies palaeogeography of the Qingxudong epoch, Duyun stage, Cambrian Period and its relationship to lead-zinc deposits in western Hunan and eastern Guizhou Provinces.Geology and Exploration, 49(1), 19-27 (in Chinese with English abstract). [37] Tucker M.E., Wright V.P., 1990. Carbonate Sedimentology. Blackwell Scientific, Oxford, pp. 1-14. [38] Wang J.,1990. Carbonate ramps and their tectonic controls, with an example from the Longwangmiaoian (early Cambrian) Yangzi carbonate ramp in South China.Sedimentary Facies and Palaeogeography, 10(5), 13-22 (in Chinese with English abstract). [39] Wang J., Duan T.Z., Xie Y., Wang Z.J., Hao M., Liu W.,2012. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block. Geological Bulletin of China, 31(11), 1739-1749. https://doi.org/10.3969/j.issn.1671-2552.2012.11.001 (in Chinese with English abstract). [40] Whalen M.T., Day J., Eberli G.P., Homewood P.W., 2002. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: Examples from the Late Devonian, Alberta basin, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(1-3), 127-151. https://doi.org/10.1016/S0031-0182(01)00476-X. [41] Woo J., Chough S.K.,2010. Growth patterns of the Cambrian microbialite: Phototropism and speciation of Epiphyton. Sedimentary Geology, 229(1-2), 1-8. https://doi.org/10.1016/j.sedgeo.2010.05.006. [42] Wray J.L.,1977. Calcareous Algae. Amsterdam, Oxford, New York, pp. 82-86. [43] Xiang L.W., Zhu Z., Li S., Zhou Z., 1999. Stratigraphic Lexicon of China: Cambrian. Geological Publishing House, Beijing (in Chinese). [44] Xue C.J., Lü G.X., Gao W.L., Yang Y., 2017. Lithofacies paleogeographic analysis of ore-bearing layers in Qingxudong period and metallogenic prediction in Limei ore field in Huayuan, western Hunan, China. Earth Science Frontiers, 24(2), 159-175. https://doi.org/10.13745/j.esf.yx.2016-12-7 (in Chinese with English abstract). [45] Yan Z., Liu J.B., Ezaki Y., Adachi N., Du S.X.,2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section, Shandong Province, northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 474, 45-57. https://doi.org/10.1016/j.palaeo.2016.07.009. [46] Yang A.H., Zhu M.Y., Zhuravlev A.Y., Yuan K.X., Zhang J.M., Chen Y.Q., 2016. Archaeocyathan zonation of the Yangtze Platform: Implications for regional and global correlation of lower Cambrian stages. Geological Magazine, 153(3), 388-409. https://doi.org/10.1017/S0016756815000333. [47] Zhang G.W., Guo A.L., Wang Y.J., Li S.Z., Dong Y.P., Liu S.F., He D.F., Cheng S.Y., Lu R.K., Yao A.P., 2013. Tectonics of South China continent and its implications. Science China Earth Sciences, 56(11), 1804-1828. https://doi.org/10.1007/s11430-013-4679-1. [48] Zhao Y.L., Yin L.M., Guo Q.J., Yuan J.L., Yang X.L., Wu M.Y., Wang L.T., Yang W., Lan T., Chen Z.P., Liu X., Chen S.G., Luo X.,2021. Progress on the study of Cambrian Stage 4 Global Stratotype Section and Point (GSSP). Guizhou Geology, 38(4), 351-359. https://doi.org/10.3969/j.issn.1000-5943.2021.04.001 (in Chinese with English abstract). [49] Zhao Z.J., Yu G., Zhu Y., Zhou J.G., Tu X.L.,2003. Tectonic evolution and its control over hydrocarbon in southern China. Journal of Chengdu University of Technology (Science and Technology Edition), 30(2), 155-168. https://doi.org/10.3969/j.issn.1671-9727.2003.02.007 (in Chinese with English abstract). [50] Zheng R.C., Zeng Y.F., 1988. Sedimentary characteristics of early Cambrian Yutang organic reefs in western Hunan.Acta Sedimentologica Sinica, 6(2), 61-67 (in Chinese with English abstract). [51] Zhou H.L., Gao J., 1988. The discovery of Late DevonianRenalcis and Renalcis mounds in Guangxi and their environmental significance. Sedimentary Facies and Palaeogeography, 8(5), 16-22 (in Chinese with English abstract). [52] Zhu M.Y., Sun Z.X., Yang A.H., Yuan J.L., Li G.X., Zhou Z.Q., Zhang J.M., 2021. Lithostratigraphic subdivision and correlation of the Cambrian in China.Journal of Stratigraphy, 45(3), 223-249 (in Chinese with English abstract). [53] Zhuravlev A.Y., Naimark E.B., Wood R.A.,2015. Controls on the diversity and structure of earliest metazoan communities: Early Cambrian reefs from Siberia. Earth-Science Reviews, 147, 18-29. https://doi.org/10.1016/j.earscirev.2015.04.008. |
|
|
|