|
|
Early Cretaceous shifting of Zoophycos in the Ouarsenis Mountains (northwestern Algeria) |
Imad Bouchemlaa,b,*, Li-Jun Zhang c,**, Madani Benyoucef b, Mariusz A. Salamond |
aDepartment of Geological Sciences, Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University of Tizi-Ouzou, P.O. Box. 17, DZ-15000 Tizi-Ouzou, Algeria bLaboratoire de Géomatique, Ècologie et Environnement, Mustapha Stambouli-Mascara University, DZ-29000 Mascara, Algeria cSchool of Resources and Environment, Henan International Joint Laboratory of Biogenic Traces and Sedimentary Minerals, Henan Polytechnic University, Jiaozuo 454003, Henan Province, China dInstitute of Earth Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland |
|
|
Abstract Early Cretaceous succession of the Oued Fodda Formation in the Ouarsenis Mountains (northwestern
Algeria) is mainly composed of marlelimestone alternations, which are subdivided into four informal
units (Units 1 to 4), based on distinct lithological, stratonomical, and ichnological features. The ichnological
analysis reveals a low diversity of the trace-fossil assemblage, which is exclusively reported from Units 2 and 3.
The ichnoassemblage contains six ichnotaxa (Chondrites intricatus, Ophiomorpha isp., Planolites isp., Thalassinoides
isp., Zoophycos brianteus, and Zoophycos cauda-galli), among which Zoophycos and Chondrites are
the most common elements of the assemblage and occur in distinct mud-rich substrates showing different
bioturbation intensities. The development of Zoophycos in the middle part of Unit 2 shows a high degree of
bioturbation (bioturbation index (BI) = 4). Zoophycos specimens are of large size, between 45 cm and 75 cm in
width, which were interpreted to have formed in a lower offshore environment where the oxygenation amount
was optimal, the sedimentation rate was low, and the benthic food was abundant on the seafloor. Toward the
upper part of Unit 2, Zoophycos-bearing levels exhibit a less intense degree of bioturbation (BI between 1 and
2) in contrast to Planolites- and Chondrites-bearing levels which have a bioturbation index (BI) between 3 and
4. At these levels, Zoophycos displays relatively small, coiled to U-shaped spreiten, probably in response to
stressful and dysoxic conditions prevailing in the water bottom. With improved oxygenation in a quiet lower
offshore to shelf margin environment in Unit 3, the benthic organisms recovered, as represented by medium to
large size Zoophycos in association with Ophiomorpha and scarce Chondrites burrows, even if the overall
bioturbation intensity is very low. The combination of trace-fossil assemblage and lithofacies of the Oued
Fodda Formation indicates relatively stable outer shelf environments below the storm wave base, which
corresponds classically to the lower offshore to shelf edge environments, and the prevailing palaeoecological
conditions are optimal and stressful for the benthic organisms.
|
Received: 16 May 2023
|
Corresponding Authors:
*imad.bouchemla@ummto.dz (I. Bouchemla); ** ljzhanghpu@gmail.com (L.-J. Zhang)
|
|
|
|
[1] Abasaghi, F., Mahboubi, A., Gharaie, M.H.M., Khanehbad, M., 2020. Occurrence of Zoophycos in the Ruteh Formation, Middle Permian (Guadalupian), Central Alborz, Iran: Palaeoenvironmental and sequence stratigraphy implications. Neues Jahrbuch fur Geologie und Paläontologie, 298, 285–309. https://doi.org/10.1127/njgpa/2020/0949.
[2] Aïfa, T., Zaagane, M., 2014. Brittle tectonics within the Jurassic formations of the Ouarsenis culminating area, northwestern Algeria. Journal of African Earth Sciences, 96, 39–50. https://doi.org/10.1016/j.jafrearsci.2014.03.020.
[3] Aigner, T., 1982. Calcareous tempestites: Storm-dominated stratification, Upper Muschelkalk limestones (Middle Trias, SW Germany). In: Einsele, G., Seilacher, A., (Eds.). Cyclic and Event Stratification. Springer-Verlag, Berlin, pp. 180–198.
[4] Almeras, Y., Elmi, S., 1982. Fluctuations des peuplements d’Ammonites et de Brachiopodes en liaison avec les variations bathymétriques pendant le Jurassique inférieur et moyen en Méditerranée occidentale. Bollettino della Società Paleontologica Italiana, 21, 168–188.
[5] Baucon, A., Bednarz, M., Dufour, S., Felletti, F., Malgesini, G., Neto De Carvalho, C., Niklas, K.J., Wehrmann, A., Batstone, R., Bernardini, F., Briguglio, A., Cabella, R., Cavalazzi, B., Ferretti, A., Zanzerl, H., McIlroy, D., 2020. Ethology of the trace fossil Chondrites: Form, function and environment. Earth-Science Reviews, 202, 102989. https://doi.org/10.1016/j.palaeo.2020.109889.
[6] Bayet-Goll, A., Daraei, M., Taher, S.P.M., Etemad-Saeed, N., Neto de Carvalho, C., Zandkarimi, K., Monaco, P., Zohdi, A., Rabbani, J., Nasiri, Y., 2020. Variations of the trace fossil Zoophycos with respect to paleoenvironment and sequence stratigraphy in the Mississippian Mobarak Formation, northern Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 551, 109754. https://doi.org/10.1016/j.palaeo.2020.109754.
[7] Belghouthi, F., Wetzel, A., Zouari, H., Jeddi, R.-S., 2020. Zoophycos in storm-affected environments: A case study from lower Maastrichtian deposits of the Mateur-Beja area (Northern Tunisia). Ichnos, 27, 200–220. https://doi.org/10.1080/10420940.2020.1730360.
[8] Bendella, M., Benyoucef, M., Mikuláš, R., Bouchemla, I., Martinell, J., Ferré, B., 2021. Shallow to marginal marine ichnoassemblages from the Upper Pliocene Slama Formation (Lower Chelif Basin, NW Algeria). Geologica Carpathica, 72 (6), 529–548.
[9] Bendella, M., Benyoucef, M., Mikuláš, R., Bouchemla, I., Ferré, B., 2022. Storm-dominated shallow marine trace fossils of the Lower Devonian Teferguenite Formation (Saoura valley, Algeria). Italian Journal of Geosciences, 141, 400–425.
[10] Benhamou, M., 1996. Evolution tectono-eustatique d’un bassin de la Téthys maghrébine: l’Ouarsenis (Algérie) pendant le Jurassique inférieur et moyen. Thèse de Doctorat, Université d’Oran, pp. 1–434.
[11] Benyoucef, M., 2006. Les flyschs Albo-Aptiens de l’Ouarsenis (Algérie du Nord): Aspect sédimentologique et reconstitution paléogéographique. Mémoire de Magister, Université d’Oran, pp. 1–121.
[12] Benyoucef, M., Ferré, B., Płachno, B.-J., Bouchemla, I., Salamon, M.A., 2022. Crinoids from the Ouarsenis Massif (Algeria) fill the Lower Cretaceous (Berriasian and Valanginian) gap of northern Africa. Annales de Paléontologie, 108, 102555. https://doi.org/10.1016/j.annpal.2022.102555.
[13] Bottjer, D.J., Droser, M.L., Jablonski, D., 1988. Palaeoenvironmental trends in the history of trace fossils. Nature, 333, 252–255. https://doi.org/10.1038/333252a0.
[14] Bouchemla, I., Bendella, M., Benyoucef, M., Lagnaoui, A., Ferré, B., Scherzinger, A., Bel Haouz, W., 2020. The Upper Jurassic Faïdja Formation (Northwestern Algeria): Sedimentology, biostratigraphy and ichnology. Journal of African Earth Sciences, 169, 103874. https://doi.org/10.1016/j.jafrearsci.2020.103874.
[15] Bouchemla, I., Bendella, M., Benyoucef, M., Vinn, O., Ferré, B., 2021a. Zoophycos and related trace fossils from the Chefar El Ahmar Formation, Upper Emsian–Frasnian Ia–Ib (Ougarta, SW Algeria). Proceedings of the Geologists’ Association, 132, 207–226. https://doi.org/10.1016/j.pgeola.2020.10.010.
[16] Bouchemla, I., Bendella, M., Benyoucef, M., Mekki, F., 2021b. Zoophycos from the Jurassic of northwestern Algeria. Morphological and paleoenvironmental implications. First International Conference on Geo-Sciences and Environment, September 25–26, 2021, Mascara, Algérie.
[17] Bouchemla, I., Benyoucef, M., Zhang, L.-J., Salamon, M.A., Klein, H., Mekki, F., 2023. Lower Jurassic trace fossil Zoophycos from the Ksour Mountains of northwestern Algeria and their palaeoecological and palaeoenvironmental significance. Palaeoworld, https://doi.org/10.1016/j.palwor.2023.07.006.
[18] Bromley, R.G., 1990. Trace Fossils: Biology and Taphonomy. Special Topics in Palaeontology Series. Unwin Hyman, London, xiii+280 pp.
[19] Bromley, R.G., Hanken, N.M., 2003. Structure and function of large, lobed Zoophycos, Pliocene of Rhodes, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 79–100. https://doi.org/10.1016/S0031-0182(02)00680-6.
[20] Brongniart, A.T., 1828. Histoire des végétaux fossiles ou recherches botaniques et géologiques sur les végétaux renfermés dans les diverses couches du globe. G. Dufour and E. d’Ocagne, Paris, pp. 1–136.
[21] Buatois, L.A., Mángano, M.G., 2011. Ichnology–organism–substrate interactions in space and time. Cambridge University Press, pp. 1–347. https://doi.org/ 10.1017/CBO9780511975622.
[22] Buatois, L.A., Mángano, M.G., Aceñolaza, F., 2002. Trazas Fósiles, Señales de Comportamiento en el Registro Estratigráfico. Edición Especial MEF n 2, pp. 1–382.
[23] Calembert, L., 1952. Massif culminant de l'Ouarsenis. XIXème Congrès Géologique International, Alger, pp. 1–3.
[24] Cecca, F., 1998. Early Cretaceous (pre-Aptian) ammonites of the Mediterranean Tethys: Palaeoecology and palaeobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 138, 305–323. https://doi.org/10.1016/S0031-0182(97)00126-0.
[25] Cherif, A., Benyoucef, M., Naimi, M.N., Ferré, B., Zeghari, A., Frau, C., Berrabah, A., 2021. Trace fossils from the Berriasian–Valanginian of the Ouarsenis Range (northwestern Algeria) and their paleoenvironmental implications. Journal of African Earth Sciences, 180, 104219. https://doi.org/10.1016/j.jafrearsci.2021.104219.
[26] Company, M., 1987. Los ammonites del Valanginiense del sector oriental de las Cordilleras Béticas (SE de Espana). Tesis Doctoral, Universidad de Granada, pp. 1–294.
[27] Dunham, R.J., 1962. Classification of carbonate rocks according to their depositional texture. In: Ham, W.E., (Ed.). Classification of Carbonate Rocks, Vol. 1. The American Association of Petroleum Geologists, Memoir, pp. 108–121.
[28] Ehrenberg, K., 1944. Ergänzende Bemerkungen zu den seinerzeit aus dem Miozän von Burgschleintz beschriebenen Gangkeren und Bauten dekapoder Krebse. Paläeontologische Zietschrift, 23, 345–359.
[29] Ekdale, A.A., Lewis, D.W., 1991. The New Zealand Zoophycos revisited: Morphology, ethology, and paleoecology. Ichnos, 1, 183–194. https://doi.org/10.1080/10420949109386351.
[30] Embry, A.F., Klovan, J.E., 1971. A Late Devonian reef tract on north-eastern Banks Island, N.W.T. Bulletin of Canadian Petroleum Geology, 19, 730–781.
[31] Frey, R.W., Pemberton, S.G., 1985. Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bulletin of Canadian Petroleum Geology, 33, 72–115. https://doi.org/10.35767/gscpgbull.33.1.072.
[32] Fu, S., Werner, F., 1995. Is Zoophycos a feeding trace? Neues Jahrbuch für Geologie und Paläontologie, 195, 37–47. https://doi.org/10.1127/njgpa/195/1995/37.
[33] Fürsich, F.T., Uchman, A., Alberti, M., Pandey, K.D., 2018. Trace fossils of an amalgamated storm-bed succession from the Jurassic of the Kachchh Basin, India: The significance of time-averaging in ichnology. Journal of Palaeogeography, 7(1), 14–31. https://doi.org/10.1016/j.jop.2017.11.002.
[34] Gaillard, C., Olivero, D., 1993. Interprétation paléoécologique nouvelle de Zoophycos Massalongo, 1855. Comptes Rendus de l’Académie des Sciences, 316, 823–830.
[35] Gaillard, C., Hennebert, M., Olivero, D., 1999. Lower Carboniferous Zoophycos from the Tournai area (Belgium): Environmental and ethologic significance. Geobios, 32, 513–524. https://doi.org/10.1016/S0016-6995(99)80001-1.
[36] Giannetti, A., Tent Manclús, J.E., Baeza Carratalá, J.F., 2017. New evidence of nearshore Mid Triassic Zoophycos: Morphological and paleoenvironmental characterization. Facies, 63, 16. https://doi.org/10.1007/s10347-017-0498-8.
[37] Glangeaud, L., 1951. Interprétation tectonophysique des caractères structuraux et paléogéographique de la méditérrannée occidentale. Bulletin de la Société Géologique de France, 6, 735–276.
[38] Gong, Y.M., Shi, G.R., Weldon, E.A., Du, Y.S., Xu, R., 2008. Pyrite framboids interpreted as microbial colonies within the Permian Zoophycos spreiten from southeastern Australia. Geological Magazine, 145, 95–103. https://doi.org/10.1017/S0016756807003974.
[39] Kireche, O., 1993. Evolution géodynamique de la marge tellienne des Maghrébides d’après l’étude du domaine parautochtone schistosé (massifs du Chélif, d’Oranie, BouMaâd, des Babors et des Bibans). Thèse de Doctorat, Université d’Alger, pp. 1–316.
[40] Knaust, D., 2004. The oldest Mesozoic nearshore Zoophycos: Evidence from the German Triassic. Lethaia, 37, 297–306. https://doi.org/ 10.1080/00241160410002045.
[41] Knaust, D., 2009a. Complex behavioural pattern as an aid to identify the producer of Zoophycos from the Middle Permian of Oman. Lethaia, 42, 146–154. https://doi.org/10.1111/j.1502-3931.2008.00120.x.
[42] Knaust, D., 2009b. Ichnology as a tool in carbonate reservoir characterization: A case study from the Permian–Triassic Khuff Formation in the Middle East. GeoArabia, 14, 17–38. https://doi.org/10.2113/geoarabia140317.
[43] Knaust, D., 2017. Atlas of Trace Fossils in Well Core: Appearance, Taxonomy and Interpretation. Springer International Publishing, Berlin, New York, pp. 1–206.
[44] Kotake, N., 1989. Paleoecology of the Zoophycos producers. Lethaia, 22, 327–341. https://doi.org/10.1111/j.1502-3931.1989.tb01349.x.
[45] Kotake, N., 1992. Deep-sea echiurans: Possible producers of Zoophycos. Lethaia, 25, 311–316. https://doi.org/10.1111/j.1502-3931.1992.tb01400.x.
[46] Kotake, N., 2014. Changes in lifestyle and habitat of Zoophycos-producing animals related to evolution of phytoplankton during the Late Mesozoic: Geological evidence for the ‘benthic–pelagic coupling model’. Lethaia, 47, 165–175. https://doi.org/10.1111/let.12046.
[47] Li, F., Zhang, H., Jing, X., Cheng, X., 2017. Paleoenvironmental analysis of the ichnogenus Zoophycos in the Lower Devonian tempestite sediments of the Longmenshan area, Sichuan, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 156–167. https://doi.org/10.1016/j.palaeo.2016.10.027.
[48] López-Cabrera, M.I., Olivero, E.B., Carnona, N.B., Ponce, J.J., 2008. Cenozoic trace fossils of the Cruziana, Zoophycos and Nereites ichnofacies from the Fuegian Andes, Argentina. Ameghiniana, 45, 377–392.
[49] Löwemark, L., 2012. Ethological analysis of the trace fossil Zoophycos: Hints from the Arctic Ocean. Lethaia, 45, 290–298. https://doi.org/10.1111/j.1502-3931.2011.00282.x.
[50] Löwemark, L., 2015. Testing ethological hypotheses of the trace fossil Zoophycos based on Quaternary material from the Greenland and Norwegian Seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 425, 1–13. https://doi.org/10.1016/j.palaeo.2015.02.025.
[51] Löwemark, L., Schäfer, P., 2003. Ethological implications from a detailed X-ray radiograph and 14C study of the modern deep-sea Zoophycos. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 101–121. https://doi.org/10.1016/S0031-0182(02)00681-8.
[52] Lukeneder, S., Harzhauser, M., Islamoglu, Y., Krystyn, L., Lein, R., 2012. A delayed carbonate factory breakdown during the Tethyan-wide Carnian Pluvial Episode along the Cimmerian terranes (Taurus, Turkey). Facies, 58, 279–296. https://doi.org/10.1007/s10347-011-0279-8.
[53] Lundgren, B., 1891. Studier öfver fossilförande lösa blok. Geologiska Föreningen i Stockholm Förhandlingar, 13, 111–121.
[54] MacEachern, J.A., Bann, K.L., Gingras, M.K., Zonneveld, J.-P., Dashtgard, S.E., Pemberton, S.G., 2012. The ichnofacies paradigm. In: Knaust, D., Bromley, R.G., (Eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, 64, 103–138. https://doi.org/10.1016/B978-0-444-53813-0.00004-6.
[55] MacEachern, J.A., Pemberton, S.G., Bhattacharya, J.P., 2007a. Ichnological and sedimentological evaluation of the Ferron Sandstone Cycles in Ivie Creek Cores #3 and #11. In: MacEachern, J.A., Gingras, M.K., Bann K.L., Pemberton, S.G., (Eds.), Ichnological Applications to Sedimentological and Sequence Stratigraphic Problems. Society for Sedimentary Geology Research Conference Abstract Volume, pp. 144–174.
[56] MacEachern, J.A., Pemberton, S.G., Gingras, M.K., Bann, K.L., 2007b. The Ichnofacies Paradigm: A Fifty-Year Retrospective. In: Miller, W. III., (Eds.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 110–134. https://doi.org/ 10.1016/B978-044452949-7/50130-3.
[57] Massalongo, A., 1855. Zoophycos, Novum Genus Plantarum Fossilium. Monographia typis Antonellianis, Veronae, pp. 45–52.
[58] Mattauer, M., 1958. Etude géologique de l’Ouarsenis oriental (Algérie). Bulletin du Service Géologique de l’Algérie, Monographie Régionale, 17, 534.
[59] Mekki, F., Bouchemla, I., Adaci, M., Talmat, S., Ferré, B., Benyoucef, M., 2023. A diverse trace-fossil assemblage from the Middle Jurassic (Bajocian) Teniet El Klakh Formation (western Saharan Atlas, Algeria). Proceedings of the Geologists’ Association, https://doi.org/10.1016/j.pgeola.2023.07.006.
[60] Mekki, F., Zhang, L.J., Vinn, O., Toom, U., Benyoucef, M., Bendella, M., Bouchemla, I., Bensalah, M., Adaci, M., 2019. Middle Jurassic Zoophycos and Chondrites from the Mélah Formation of Saharan Atlas, Algeria. Estonian Journal of Earth Sciences, 68, 190–198. https://doi.org/10.3176/earth.2019.13.
[61] Monaco, P., Bracchini, L., Rodríguez-Tovar, F.J., Uchman, A., Coccioni, R., 2017. Evolutionary trend of Zoophycos morphotypes from the Upper Cretaceous–Lower Miocene in the type pelagic sections of gubbio, Central Italy. Lethaia, 50, 41–57. https://doi.org/10.1111/let.12175.
[62] Nasiri, Y., Reza, M.-H., Mahboubi, A., Olivero, D., Mosaddegh, H., 2018. Zoophycos ichnogenus distribution and paleoenvironmental analysis: Examples from the Mississippian Mobarak Formation (Alborz Basin, Iran). Historical Biology, 32, 848–867. https://doi.org/ 10.1080/08912963.2018.1540614.
[63] Nicholson, H.A., 1873. Contributions of the study of the errant annelids of the older Paleozoic rock. Proceeding of the Royal Society of London, 21, 288–290.
[64] Olivero, D., 1994. La trace fossile Zoophycos du Jurassique du Sud-Est de la France. Signification paleoenvironnementale. Documents des Laboratoires de Géologie, Lyon. 129, pp. 1–329.
[65] Olivero, D., 1996. Zoophycos distribution and sequence stratigraphy: Examples from the Jurassic and Cretaceous deposits of southern France. Palaeogeography, Palaeoclimatology, Palaeoecology, 123, 273–287. https://doi.org/10.1016/0031-0182(95)00120-4.
[66] Olivero, D., 2003. Early Jurassic to Late Cretaceous evolution of Zoophycos in the French Subalpine Basin (southeastern France). Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 59–78. https://doi.org/10.1016/S0031-0182(02)00679-X.
[67] Olivero, D., 2007. Zoophycos and the role of type specimens in ichnotaxonomy. In: Miller, W. III., (Ed.). Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 219–231. https://doi.org/10.1016/B978-044452949-7/50139-X.
[68] Olivero, D., Gaillard, C., 1996. Paleoecology of Jurassic Zoophycos from south-eastern France. Ichnos, 4, 249–260.https://doi.org/10.1080/10420949609380135.
[69] Olivero, D., Gaillard, C., 2007. A constructional model for Zoophycos. In: Miller, W. III., (Ed.). Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 466–476. https://doi.org/10.1016/B978-044452949-7/50154-6.
[70] Patel, S.J., Desai, B.G., 2009. Animal-sediment relationship of the crustaceans and polychaetes in the intertidal zone around Mandvi, Gulf of Kachchh, Western India. Journal of the Geological Society of India, 74, 233–259.
[71] Polvêche, J., 1960. Contribution à l’étude géologique de l’Ouarsenis oranais. Bulletin du Service Géologique de l’Algérie, 24 (I, II), 1–577.
[72] Richiano, S., 2015. Environmental factors affecting the development of the Zoophycos ichnofacies in the Lower Cretaceous Río Mayer Formation (Austral Basin, Patagonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 439, 17–26. https://doi.org/10.1016/j.palaeo.2015.03.029.
[73] Sadji, R., Munnecke, A., Benhamou, M., Alberti, M., Belkhedim, S., Ramdane, N., 2021. Late Jurassic temperatures for the southern Tethyan margin based on belemnites δ18O from the Ouarsenis Mountains, northwestern Algeria. Palaeogeography, Palaeoclimatology, Palaeoecology, 566, 110224. https://doi.org/10.1016/j.palaeo.2021.110224.
[74] Savrda, C.E., Bottjer, D.J., 1989. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: Application to Upper Cretaceous Niobrara Formation, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology, 74, 49–74. https://doi.org/10.1016/0031-0182(89)90019-9.
[75] Scotese, C.R., 2014. Atlas of Early Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS, Volume 2, The Cretaceous, Maps 23–31, Mollweide Projection, PALEOMAP Project, Evanston, IL.
[76] Sedorko, D., Netto, R.G, Horodyski, R.S., 2018. A Zoophycos carnival in Devonian beds: Paleoecological, paleobiological, sedimentological, and paleobiogeographic insights. Palaeogeography, Palaeoclimatology, Palaeoecology, 507, 188–200. https://doi.org/10.1016/j.palaeo.2018.07.016.
[77] Seilacher, A., 1967. Bathymetry of trace fossils. Marine Geology, 5, 413–428.
[78] Seilacher, A., 2007. Trace Fossil Analysis. Springer Berlin, Heidelberg, pp. 1–226. https://doi.org/10.1007/978-3-540-47226-1.
[79] Taylor, A.M., Goldring, R., 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150, 141–148.
[80] Tchoumatchenco, P., 1986. Répartition paléoécologique des brachiopodes Jurassiques dans les Monts de Tiaret et l’Ouarsenis occidental (Algérie). In: Racheboeuf, P.R., Emig, C.C., (Eds.). Les brachiopodes fossiles et actuels. Biostratigraphie du Paléozoïque, 4, pp. 389–398.
[81] Tchoumatchenco, P., Khrischev, K., 1992. Le Jurassique dans les Monts de Tiaret et de l’Ouarsenis occidental (Algérie). II. Evolutions paléogéographique et paléotectonique. Geologica Balcanica, 22, 53–63.
[82] Tchoumatchenco, P., Nikolov, T., Kozhukharov, D., Benev, B., Gochev, P., Katzkov, N., Khrischev, K., Moev, M., Nicolov, Z., Slavov, I., Tzankov, T., Zidarov, N., 1995. Le Crétacé inférieur dans le massif de l’Ouarsenis et les Monts de Tiaret (Algérie du Nord). Geologica Balcanica, 25, 27–59.
[83] Uchman, A., 1995. Taxonomy and paleoecology of flysch trace fossils: The Marnoso-Arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, 15, 1–115.
[84] Uchman, A., Hanken, N.-M., Nielsen, J.K., Grundvåg, S.A., Piasecki, S., 2016. Depositional environment, ichnological features and oxygenation of Permian to earliest Triassic marine sediments in central Spitsbergen, Svalbard. Polar Research, 35, 24782. https://doi.org/10.3402/polar.v35.24782.
[85] Vanuxem, L., 1842. Geology of New York, Part III. Survey of the Third Geological District, New York. W.A., White & J. Visscher, Albany, pp. 1–306.
[86] Vinn, O., Bendella, M., Benyoucef, M., Zhang, L.-J., Bouchemla, I., Ferré, B., Lagnaoui, A., 2020. Abundant Zoophycos and Chondrites from the Messinian (Upper Miocene) of northwestern Algeria. Journal of African Earth Sciences, 171, 103921. https://doi.org/ 10.1016/j.jafrearsci.2020.103921.
[87] Von Sternberg, K.M.G., 1833. Versuch einer geognostisch-botanischen Darstellung der Flora des Vorwelt. Fr. Fleischer, Leipzig, Prague, vol. 2, part 5–6, pp. 1–80, with 26 plates.
[88] Wetzel, A., 1991. Ecologic interpretation of deep-sea trace fossil communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 85, 47–69. https://doi.org/10.1016/0031-0182(91)90025-M.
[89] Wetzel, A., Blechschmidt, I., Uchman, A., Matter, A., 2007. A highly diverse ichnofauna in Late Triassic deep-sea fan deposits of Oman. Palaios, 22, 567–576. https://doi.org/10.2110/palo.2006.p06-098r.
[90] Wetzel, A., Werner, F., 1981. Morphology and ecological significance of Zoophycos in deep-sea sediments of NW Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 32, 185–212. https://doi.org/10.1016/0031-0182(80)90040-1.
[91] Wildi, W., 1983. La chaîne tello-rifaine (Algérie, Maroc, Tunisie): Structure, stratigraphie et évolution du Trias au Miocène. Revue de Géographie Physique et de Géologie dynamique, Paris, 3, 201–299.
[92] Zhang, L.-J., 2014. Lower Devonian tempestites in western Yangtze, South China: Insight from Zoophycos ichnofabrics. Geological Journal, 49, 177–187. https://doi.org/10.1002/gj.2507.
[93] Zhang, L.-J., Gong, Y., 2012. Systematic revision and ichnotaxonomy of Zoophycos. Earth Science Journal China University of Geosciences, 37, 60–79.
[94] Zhang, L.-J., Zhao, Z., 2015. Lower Devonian trace fossils and their palaeoenvironmental significance from western Yangtze Plate, South China. Turkish Journal of Earth Sciences, 24, 325–343. https://doi.org/10.3906/yer-1409-15.
[95] Zhang, L.-J., Zhao, Z., 2016. Complex behavioural patterns and ethological analysis of the trace fossil Zoophycos: Evidence from the Lower Devonian of South China. Lethaia, 49, 275–284. https://doi.org/10.1111/let.12146.
[96] Zhang, L.-J., Fan, R.Y., Gong, Y.M., 2015b. Zoophycos macroevolution since 541 Ma. Scientific Reports, 5 (14954), 1–10. https://doi.org/10.1038/srep14954.
[97] Zhang, L.-J., Shi, G.R., Gong, Y., 2015a. An ethological interpretation of Zoophycos based on Permian records from South China and southeastern Australia. Palaios, 30, 408–423. https://doi.org/10.2110/palo.2013.060. |
|
|
|