|
|
Late Pleistocene spore-pollen record and climatic change at the Chongphadae Cave Site, Democratic People's Republic of Korea |
Se Chan Kim, Rye Sun Choe*, Il Nam Kim, Chol U, Ryong Il Kang |
Institute of Human Evolution and Development History, Faculty of History, Kim Il Sung University, Taesong District, Pyongyang, Democratic People's Republic of Korea |
|
|
Abstract We present a detailed pollen record and interpretations of late Pleistocene climatic change at the Chongphadae Cave Site, Democratic People's Republic of Korea. The mean annual paleotemperature and mean annual paleoprecipitation of the site were calculated using the temperature index and precipitation index based on ecological features and geographical distribution of each taxon. Temperature index and precipitation index range from 8.8 ℃ to 10.4 ℃ and from 805.0 mm to 963.1 mm, respectively. Four dates (radiocarbon, uranium series, fission track, and paleomagnetic excursion dating) of the deposit profile investigated yield a range of ~ 21.3 ka BP to ~117 ka BP, geochronologically corresponding to the late Pleistocene, and extend from the last interglacial highstand through the Last Glacial Maximum. Our results are thus consistent with the climatic shift from interglacial to glacial conditions, provide evidence that the environments of the region, which was reconstructed from the paleoclimatic index, changed from a mild and humid to a cool and dry climate during the late Pleistocene, and suggest trends similar to those of several parts of the Northern Hemisphere which lie in the same latitudinal zone as our study area.
|
Received: 19 April 2022
|
Corresponding Authors:
*E-mail address: rs.choe0327@ryongnamsan.edu.kp (R.S. Choe).
Peer review under responsibility of China University of Petroleum (Beijing).
|
|
|
|
[1] Bennett K.D.,2003. Documentation for PSIMPOLL 4.25 and PSCOMB 1.03: C Programs for Poltting Pollen Diagrams and Analysing Pollen Data. Quaternary Geology, Department of Earth Science Uppsala Universitet, Sweden. http://www.kv.geo.uu.se/psimpoll.html, last accessed 04/07/03. [2] Burney D.A., Burney L.P., 1993. Modern pollen deposition in cave sites: Experimental results from New York State. New Phytologist, 124(3), 523-535. https://doi.org/10.1111/j.1469-8137.1993.tb03844.x. [3] Cai M.T., Ye P.S., Yang X.C., Li C.L.,2019. Vegetation and climate change in the Hetao Basin (northern China) during the last interglacial-glacial cycle. Journal of Asian Earth Sciences, 171, 1-8. https://doi.org/10.1016/j.jseaes.2018.11.024. [4] Cai S.S., Yu Z.C.,2011. Response of a warm temperate peatland to Holocene climate change in northeastern Pennsylvania. Quaternary Research, 75(3), 531-540. https://doi.org/10.1016/j.yqres.2011.01.003. [5] Camuera J.,Jiménez-Moreno, G., Ramos-Román, M.J., García-Alix, A., Toney, J.L., Anderson, R.S., Jiménez-Espejo, F., Bright, J., Webster, C., Yanes, Y., Carrión, J.S., 2019. Vegetation and climate changes during the last two glacial-interglacial cycles in the western Mediterranean: A new long pollen record from Padul (southern Iberian Peninsula). Quaternary Science Reviews, 205, 86-105. https://doi.org/10.1016/j.quascirev.2018.12.013. [6] Cao X.Y., Tian F., Telford R.J., Ni J., Xu Q.H., Chen F.H., Liu X.Q., Stebich M., Zhao Y., Herzschuh U.,2017. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation. Quaternary Science Reviews, 178, 37-53. https://doi.org/10.1016/j.quascirev.2017.10.030. [7] Carrión J.S., Munuera M., Navarro C., Burjachs F., Dupré M., Walker M.J., 1999. The palaeoecoloical potential of pollen records in caves: The case of Mediterranean Spain. Quaternary Science Reviews, 18(8), 1061-1073. https://doi.org/10.1016/S0277-3791(98)00002-X. [8] Carrión J.S., Scott L.,1999. The challenge of pollen analysis in palaeoenvironmental studies of hominid beds: The record from Sterkfontein caves. Journal of Human Evolution, 36(4), 401-408. https://doi.org/10.1006/jhev.1998.0276. [9] Carrión J.S., Yll E.I., Walker M.J., Legaz A.J., Chaín C., López A., 2003. Glacial refugia of temperate, Mediterranean and Ibero-North African flora in south-eastern Spain: New evidence from cave pollen at two Neanderthal man sites. Global Ecology and Biogeography, 12(2), 119-129. https://doi.org/10.1046/j.1466-822X.2003.00013.x. [10] Chen Y., Ni J., Herzschuh U.,2010. Quantifying modern biomes based on surface pollen data in China. Global and Planetary Change, 74(3-4), 114-131. https://doi.org/10.1016/j.gloplacha.2010.09.002. [11] Choe R.S., Han K.S., Kim S.C., Ho C.U., Kang I.,2020. Late Pleistocene fauna from Chongphadae Cave, Hwangju County, Democratic People's Republic of Korea. Quaternary Research, 97, 42-54. https://doi.org/10.1017/qua.2020.9. [12] Cosford J., Qing H.R., Lin Y., Eglington B., Mattey D., Chen Y.G., Zhang M.L., Cheng H.,2010. The East Asian monsoon during MIS 2 expressed in a speleothem δ18O record from Jintanwan Cave, Hunan, China. Quaternary Research, 73(3), 541-549. https://doi.org/10.1016/j.yqres.2010.01.003. [13] Faegry K., Iversen J., 1964. Textbook of Pollen Analysis. Munksggard, Copenhagen, pp. 1-237. [14] Faith J.T.,O'Connell, J.F., 2011. Revisiting the late Pleistocene mammal extinction record at Tight Entrance Cave, southwestern Australia. Quaternary Research, 76(3), 397-400. https://doi.org/10.1016/j.yqres.2011.08.001. [15] Furutani M.,1989. Stratigraphical subdivision and pollen zonation of the Middle and Upper Pleistocene in the coastal area of Osaka Bay, Japan.Journal of Geosciences, Osaka City University, 32, 91-121. [16] Guiot J.,1985. A method for palaeoclimatic reconstruction in palynology based on multivariate time-series analysis. Géographie Physique et Quaternaire, 39(2), 115-125. https://doi.org/10.7202/032596ar. [17] Hayashi R., Takahara H., Hayashida A., Takemura K.,2010. Millennial-scale vegetation changes during the last 40,000 yr based on a pollen record from Lake Biwa, Japan. Quaternary Research, 74(1), 91-99. https://doi.org/10.1016/j.yqres.2010.04.008. [18] Herries A.I.R., Reed, K.E., Kuykendall, K.L., Latham, A.G., 2006. Speleology and magnetobiostratigraphic chronology of the Buffalo Cave fossil site, Makapansgat, South Africa. Quaternary Research, 66(2), 233-245. https://doi.org/10.1016/j.yqres.2006.03.006. [19] Holloway R.G., Bryant V.M., 1986. New directions of palynology in ethnobiology.Journal of Ethnobiology, 6, 47-65. [20] Huang E.Q., Tian J., Steinke S.,2011. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon. Quaternary Research, 75(1), 196-204. https://doi.org/10.1016/j.yqres.2010.08.014. [21] Igarashi Y., Oba T.,2006. Fluctuations in the East Asian monsoon over the last 144 ka in the northwest Pacific based on a high-resolution pollen analysis of IMAGES core MD01-2421. Quaternary Science Reviews, 25(13), 1447-1459. https://doi.org/10.1016/j.quascirev.2005.11.011. [22] Jiménez-Moreno,G., Scott Anderson, R., Fawcett, P.J., 2007. Orbital- and millennial-scale vegetation and climate changes of the past 225 ka from Bear Lake, Utah-Idaho (USA). Quaternary Science Reviews, 26(13), 1713-1724. https://doi.org/10.1016/j.quascirev.2007.05.001. [23] Leipe C., Nakagawa T., Gotanda K., Müller S., Tarasov P.E.,2015. Late Quaternary vegetation and climate dynamics at the northern limit of the East Asian summer monsoon and its regional and global-scale controls. Quaternary Science Reviews, 116, 57-71. https://doi.org/10.1016/j.quascirev.2015.03.012. [24] Li C.Z., Li Y.C., Li G., Wang C.Y., Li B.,2019. Environmental change and human activity in the northeastern part of the North China Plain during early MIS-2. Journal of Asian Earth Sciences, 170, 96-105. https://doi.org/10.1016/j.jseaes.2018.10.015. [25] Li G.Y., Qian Z.S., Hu Y., 1995. Palynological Analysis Manual. Beijing: Geological Publishing House, pp. 1-223 (in Chinese with English abstract). [26] Li H.C., Liew P.M., Seki O., Kuo T.S., Kawamura K., Wang L.C., Lee T.Q.,2013. Paleoclimate variability in central Taiwan during the past 30 Kyrs reflected by pollen, δ13CTOC, and n-alkane-δD records in a peat sequence from Toushe Basin. Journal of Asian Earth Sciences, 69, 166-176. https://doi.org/10.1016/j.jseaes.2012.12.005. [27] Liu D.C., Xia Z.K., Wang Y.P., Bao W.B.,2008. Analysis of the cave deposits and the sediment environment on the Zhijidong paleolithic cave site, Henan Province. Acta Anthropologica Sinica, 27(1), 71-78. https://doi.org/10.3969/j.issn.1000-3193.2008.01.010 (in Chinese with English abstract). [28] Luo L.D.,1989. Sporopollen analysis to one-step terrace of the Jialingjiang River in Chongqing city and its palaeoclimatic development during late Holocene.Marine Geology and Quaternary Geology, 9(4), 69-85 (in Chinese with English abstract). [29] Luo L.D.,1995. A method for calculating palaeoclimate index in Quaternary pollen-spore analysis.Journal of Southwest China Normal University (Natural Science Edition), 20(4), 445-455. [30] Magny M., Guiot J., Schoellammer P.,2001. Quantitative reconstruction of Younger Dryas to mid-Holocene paleoclimates at Le Locle, Swiss Jura, using pollen and lake-level data. Quaternary Research, 56(2), 170-180. https://doi.org/10.1006/qres.2001.2257. [31] Martín-Consuegra,E., Ubera, J.L., Hernández-Bernejo, E., 1996. Palynology of the historical period at the Madinat al-Zahra archaeological site, Spain. Journal of Archaeological Science, 23(2), 249-261. https://doi.org/10.1006/jasc.1996.0022. [32] Molodkov A., Bolikhovskaya N.,2010. Climato-chronostratigraphic framework of Pleistocene terrestrial and marine deposits of northern Eurasia, based on pollen, electron spin resonance, and infrared optically stimulated luminescence analyses. Estonian Journal of Earth Sciences, 59(1), 49-62. https://doi.org/10.3176/earth.2010.1.04. [33] Moore P.D., Webb J.A., Collinson M.E., 1991. Pollen Analysis (Third Edition). Oxford: Blackwell Scientific Publications, pp. 1-216. [34] Müller S., Tarasov P.E., Andreev A.A., Tütken T., Gartz S., Diekmann B.,2010. Late Quaternary vegetation and environments in the Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh. Quaternary Science Reviews, 29(17), 2071-2086. https://doi.org/10.1016/j.quascirev.2010.04.024. [35] Mumma S.A., Whitlock C., Pierce K.,2012. A 28,000 year history of vegetation and climate from Lower Red Rock Lake, Centennial Valley, southwestern Montana, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 326-328, 30-41. https://doi.org/10.1016/j.palaeo.2012.01.036. [36] Nakagawa T., Tarasov P.E., Nishida K., Gotanda K., Yasuda Y., 2002. Quantitative pollen-based climate reconstruction in central Japan: Application to surface and Late Quaternary spectra. Quaternary Science Reviews, 21(18-19), 2099-2113. https://doi.org/10.1016/S0277-3791(02)00014-8. [37] Navarro C., Carrión J.S., Munuera M., Prieto A.R., 2001. Cave surface pollen and the palynological potential of karstic cave sediments in palaeoecology. Review of Palaeobotany and Palynology, 117(4), 245-265. https://doi.org/10.1016/S0034-6667(01)00095-1. [38] Navarro C., Carrión J.S., Prieto A.R., Munuera M., 2002. Modern cave pollen in an arid environment and its application to describe palaeorecords.Complutum, 13, 7-18. [39] Panno S.V., Curry B.B., Wang H., Hackley K.C., Liu C.L., Lundstrom C., Zhou J.Z.,2004. Climate change in southern Illinois, USA, based on the age and δ13C of organic matter in cave sediments. Quaternary Research, 61(3), 301-313. https://doi.org/10.1016/j.yqres.2004.01.003. [40] Ramsey C.L., Griffiths P.A., Fedje D.W., Wigen R.J., Mackie Q.,2004. Preliminary investigation of a late Wisconsinan fauna from K1 cave, Queen Charlotte Islands (Haida Gwaii), Canada. Quaternary Research, 62(1), 105-109. https://doi.org/10.1016/j.yqres.2004.05.003. [41] Reese C.A., Liu K.B., Thompson L.G., 2013. An ice-core pollen record showing vegetation response to Late-glacial and Holocene climate changes at Nevado Sajama, Bolivia. Annals of Glaciology, 54(63), 183-190. https://doi.org/10.3189/2013AoG63A375. [42] Reimer P.J., Baillie M.G.L., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Burr G.S., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., McCormac F.G., Manning S.W., Reimer R.W., Richards D.A., Southon J.R., Talamo S., Turney C.S.M., van der Plicht J., Weyhenmeyer C.E., 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon, 51(4), 1111-1150. https://doi.org/10.1017/S0033822200034202. [43] Shen C.M., Liu K.B., Tang L.Y., Overpeck J.T.,2006. Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. Review of Palaeobotany and Palynology, 140(1), 61-77. https://doi.org/10.1016/j.revpalbo.2006.03.001. [44] South China Institute of Botany and Institute of Botany, Academia Sinica, 1982. Angiosperm Pollen Flora of Tropic and Subtropic China. Beijing: Science Press, pp. 1-452 (in Chinese). [45] Stuiver M., Reimer P.J., Bard E., Beck J.W., Burr G.S., Hughen K.A., Kromer B., McCormac G., van der Plicht J., Spurk M., 1998. IntCal98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon, 40(3), 1041-1083. https://doi.org/10.1017/S0033822200019123. [46] Tonello M.S., Mancini M.V., Seppä H.,2009. Quantitative reconstruction of Holocene precipitation changes in southern Patagonia. Quaternary Research, 72(3), 410-420. https://doi.org/10.1016/j.yqres.2009.06.011. [47] Twiddle C.L.,2012. Pollen analysis: Not just a qualitative tool. In: Geomorphological Techniques, Chap. 4, sec. 1.4. British Society for Geomorphology, pp. 1-11. [48] Uzquiano P., Yravedra J., Zapata B.R.,Gil Garcia, M.J., Sesé, C., Baena, J., 2012. Human behaviour and adaptations to MIS 3 environmental trends(>53-30 ka BP) at Esquilleu cave (Cantabria, northern Spain). Quaternary International, 252, 82-89. https://doi.org/10.1016/j.quaint.2011.07.023. [49] Verheyden S., Nader F.H., Cheng H.J., Edwards L.R., Swennen R.,2008. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita cave, Lebanon. Quaternary Research, 70(3), 368-381. https://doi.org/10.1016/j.yqres.2008.05.004. [50] Wang F.H., Chien N.F., Zhang Y.L., Yang H.Q., 1995. Pollen Flora of China, Second Edition. Beijing: Science Press, pp. 1-461 (in Chinese). [51] Wang Y.J., Cheng H., Edwards R.L., An Z.S., Wu J.Y., Shen C.C., Dorale J.A., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294(5550), 2345-2348. https://doi.org/10.1126/science.1064618. [52] Wei H.C., Fan Q.S., Zhao Y., Ma H.Z., Shan F.S., An F.Y., Yuan Q.,2015. A 94-10 ka pollen record of vegetation change in Qaidam Basin, northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 431, 43-52. https://doi.org/10.1016/j.palaeo.2015.04.025. [53] Xiao J.Y., Chen J.Q., Li H., Xu Z.P., Sun G., Niu C.X., Yang G.C.,2008. Quantitative analysis of the Quaternary sporopollen assemblages: A case study of hole HZ-S core in Handan, Hebei, China. Geological Bulletin of China, 27(5), 599-604. https://doi.org/10.3969/j.issn.1671-2552.2008.05.002 (in Chinese with English abstract). [54] Yakovlev A., Danukalova G., Kosintcev P., Alimbekova L., Morozova E.,2006. Biostratigraphy of the Late Palaeolithic site of “Bajslan-Tash cave”(the Southern Urals). Quaternary International, 149(1), 115-121. https://doi.org/10.1016/j.quaint.2005.11.025. [55] Zhang Z.Y., Cheng D.M., Li C.S., Hu W., Zhan X.H., Ji H.L., 2019. The complexity of climate reconstructions using the coexistence approach on Qinghai-Tibetan Plateau. Journal of Palaeogeography, 8(1), 68-77. https://doi.org/10.1186/s42501-018-0016-0. |
|
|
|