|
|
A case study on how astronomical cycles affect the organic carbon accumulation |
Yang Lia, Ren-Chao Yanga,b,*, Carlos Zavalac,d, Liang Donga, Valentin Trobbianic |
aShandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, Shandong Province, China. bLaboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong Province, China. cGeology Department, Universidad Nacional del Sur, Bahía Blanca 8000, Argentina.d Geología de Cuencas Sedimentarias (GCS) Argentina, Bahía Blanca 8000, Argentina. |
|
|
Abstract The paleoclimate change impacts the sedimentary environment and process, which in turn control the accumulation of organic carbon. Numerous studies have shown that the paleoclimate is controlled by astronomical cycles. Hence, understanding how these cycles impact the accumulation of organic carbon is a critical question that requires in-depth discussion. Previous studies have shown that Milankovitch cycle can be revealed from the sediments of the 7th Oil Member (Chang 7 Member for short) of the Triassic Yanchang Formation in the southern Ordos Basin, suggesting that the deposition was controlled by astronomically-forced climate changes. Building on previous research, this study collected natural gamma (GR) data of Chang 7 Member from the N36 Well to further analyze astronomical cycles, combined with X-ray fluorescence (XRF) analysis and total organic carbon (TOC) tests, to reconstruct the paleoenvironment and analyze the organic matter enrichment characteristics. The results of this contribution show that, paleoclimate, paleo-redox conditions, paleo-water level, paleo-productivity and sediment accumulation rate (SAR) collectively controlled the enrichment of organic matter. Notably, this study identified the presence of eccentricity, obliquity, precession, and the 1.2 Myr long obliquity cycle in the Chang 7 Member. These cycles controlled the paleoenvironmental changes at different timescales and influenced the enrichment of organic matter, which has implications for subsequent energy exploration.
|
Received: 11 December 2022
|
Corresponding Authors:
*yang100808@126.com (R.C. Yang)
|
|
|
|
[1] Boulila S., Galbrun B., Miller K.G., Pekar S.F., Browning J.V., Laskar J., Wright J.D.,2011. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth-Science Reviews, 109(3-4), 94-112. https://doi.org/10.1016/j.earscirev.2011.09.003. [2] Burdige D.J.,2007. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chemical Reviews, 107(2), 467-485. https://doi.org/10.1002/chin.200720266. [3] Chen D., Pang X.Q., Wang Y.W., Dong Y.X., Jiang F.J., Li L., Pang H., Bai H., Pang B., Qin R., Jiang H.,2020. Palaeoenvironmental periodisms of middle Eocene terrestrial sediments in Bohai Bay Basin, eastern China, and their implications for organic matter accumulation. Marine and Petroleum Geology, 112, 104060. https://doi.org/10.1016/j.marpetgeo.2019.104060. [4] Chen G., Gang W.Z., Liu Y.Z., Wang N., Guo Y., Zhu C.Z., Cao Q.Y.,2019. High-resolution sediment accumulation rate determined by cyclostratigraphy and its impact on the organic matter abundance of the hydrocarbon source rock in the Yanchang Formation, Ordos Basin, China. Marine and Petroleum Geology, 103, 1-11. https://doi.org/10.1016/j.marpetgeo.2019.01.044. [5] Cheng D.W., Zhang S.C., Zhang Z.J., Zhou C.M., Wang H.J., Yuan X.J., Chen X.Y.,2020. An astronomically calibrated stratigraphy of the Mesoproterozoic Hongshuizhuang Formation, North China: Implications for pre-Phanerozoic changes in Milankovitch orbital parameters. Journal of Asian Earth Sciences, 199, 104408. https://doi.org/10.1016/j.jseaes.2020.104408. [6] Chu R.J., Wu H.C., Zhu R.K., Fang Q., Deng S.H., Cui J.W., Yang T.S., Li H.Y., Cao L.W., Zhang S.H.,2020. Orbital forcing of Triassic megamonsoon activity documented in lacustrine sediments from Ordos Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 541, 109542. https://doi.org/10.1016/j.palaeo.2019.109542. [7] Cosentino D., Bertini A., Cipollari P., Florindo F., Gliozzi E., Grossi F., Mastro S.L., Sprovieri M., 2011. Orbitally forced paleoenvironmental and paleoclimate changes in the late postevaporitic Messinian of the Central Mediterranean Basin. Geological Society of America Bulletin, 124, 499-516. https://doi.org/10.1130/B30462.1. [8] Cui J.W., Zhu. R.K., Luo Z., Li S., 2019. Sedimentary and geochemical characteristics of the Triassic Chang 7 Member shale in the Southeastern Ordos Basin, Central China. Petroleum Science, 16, 285-297. https://doi.org/10.1007/s12182-019-0307-9. [9] Dembicki Jr., H., 2009. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bulletin, 93, 341-356. https://doi.org/10.1306/10230808076. [10] Deng S.H., Lu Y.Z., Luo Z., Fan R., Li X., Zhao Y., Ma X.Y., Zhu R.K., Cui J., 2018. Subdivision and age of the Yanchang Formation and the Middle/Upper Triassic boundary in Ordos Basin, North China. Science China: Earth Sciences, 61, 1419-1439. https://doi.org/10.1007/s11430-017-9215-3. [11] Ding X.J., Liu G.D., Zha M., Huang Z.L., Gao C.H., Wang P.G., Qu J.X., Lu X.J., Chen Z.L., 2015. Characteristics and origin of lacustrine source rocks in the Lower Cretaceous, Erlian Basin, northern China. Marine and Petroleum Geology, 66, 939-955. http://dx.doi.org/10.1016/j.marp. [12] Dymond J., Suess E., Lyle M., 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7(2), 163-181. https://doi.org/10.1029/92PA00181. [13] Fang Q., Wu H.C., Hinnov L.A., Wang X.L., Yang T.S., Li H.Y., Zhang S.H.,2016. A record of astronomically forced climate change in a Late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China. Sedimentary Geology, 341, 163-174. https://doi.org/10.1016/j.sedgeo.2016.06.002. [14] Fu J.H., Li S.X., Niu X.B., Deng X.Q., Zhou X.P., 2020. Geological characteristics and exploration practice of the self-sourced reservoir in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47(5), 931-945. https://doi.org/10.1016/S1876-3804(20)60107-0. [15] Fu J.H., Li S.X., Xu L.M., Niu X.B., 2018. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45(6), 998-1008. https://doi.org/10.1016/S1876-3804(18)30104-6. [16] Fu M.Y., Li N., Huang Q., Liu L., 2017. Shoreline-neritic mixed sedimentation response to sea level change and paleoclimate: A case study from Carboniferous in Tarim Basin.Acta Sedimentologica Sinica, 35(6), 1110-1120 (in Chinese with English Abstract). [17] Guo Q.L., Yao Y., Hou L.H., Tang S.H., Pan S.Q., Yang F.,2022. Oil migration, retention, and differential accumulation in “sandwiched” lacustrine shale oil systems from the Chang 7 member of the Upper Triassic Yanchang Formation, Ordos Basin, China. International Journal of Coal Geology, 261, 104077. https://doi.org/10.1016/j.coal.2022.104077. [18] Hatch J.R., Leventhal J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99(1-3), 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y. [19] Hinnov L.A.,2013. Cyclostratigraphy and its revolutionizing applications in the Earth and planetary sciences. Geological Society of America Bulletin, 125, 1703-1734. https://doi.org/10.1130/B30934.1. [20] Hofmann A., Dirks P.H.G.M., Jelsma H.A., 2004. Shallowing-upward carbonate cycles in the Belingwe Greenstone Belt, Zimbabwe: A record of Archean sea-level oscillations. Journal of Sedimentary Research, 74, 64-81. https://doi.org/10.1306/052903740064. [21] Jin X., Baranyi V., Caggiati M., Franceschi M., Wall C.J., Liu G.L., Schmitz M.D., Gianolla P., Ogg J.G., Liu G., Shi Z.Q., Preto N.,2021. Middle Triassic lake deepening in the Ordos Basin of North China linked with global sea-level rise. Global and Planetary Change, 207, 103670. https://doi.org/10.1016/j.gloplacha.2021.103670. [22] Ju W., Niu X.B., Feng S.B., You Y., Xu K., Wang G., Xu H.R., 2020. Predicting the present-day in situ stress distribution within the Yanchang Formation Chang 7 shale oil reservoir of Ordos Basin, Central China. Petroleum Science, 17, 912-924. https://doi.org/10.1007/s12182-020-00448-8. [23] Keast A., Eadie J., 1984. Growth in the first summer of life: A comparison of nine co-occurring fish species. Canadian Journal of Zoology, 62(7), 1242-1250. https://doi.org/10.1139/z84-180. [24] Laskar J., Robutel P., Joutel F., Gastineau M., Correia A.C.M., Levrard B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428, 261-285. https://doi.org/10.1051/0004-6361:20041335. [25] Li M.S., Huang C.J., Ogg J., Zhang Y., Hinnov L., Wu H.C., Chen Z.Q., Zou Z.Y.,2019. Paleoclimate proxies for cyclostratigraphy: Comparative analysis using a Lower Triassic marine section in South China. Earth-Science Reviews, 189, 125-146. https://doi.org/10.1016/j.earscirev.2019.01.011. [26] Li Y., Fan A.P., Yang R.C., Sun Y.P., Lenhardt N.,2021. Sedimentary facies control on sandstone reservoir properties: A case study from the Permian Shanxi Formation in the southern Ordos basin, central China. Marine and Petroleum Geology, 129, 105083. https://doi.org/10.1016/j.marpetgeo.2021.105083. [27] Li Y., Fan A.P., Yang R.C., Sun Y.P., Lenhardt N.,2022. Braided deltas and diagenetic control on tight sandstone reservoirs: A case study on the Permian Lower Shihezi Formation in the southern Ordos Basin (central China). Sedimentary Geology, 432, 106156. https://doi.org/10.1016/j.sedgeo.2022.106156. [28] Li, Y., Yang, R.C., van Loon, A.J., Dong, L., 2023. Astronomical cycles and climate change as determined from a continuous core of the Triassic Yanchang Formation (Ordos Basin, China). Marine and Petroleum Geology, 151, 106183. https://doi.org/10.1016/j.marpetgeo.2023.106183. [29] Li Y., Yang R.C., 2023. Astronomical calibration of a ten-million-year Triassic lacustrine record in the Ordos Basin, North China. Sedimentology, 70(2), 407-433. https://doi.org/10.1111/sed.13043. [30] Liu G., Han X.B., Chen Y.P., Li J., Song L.H., Zhou X., Hu B.Q., Li L., 2022. Early-Holocene paleo-tropical cyclone activity inferred from a sedimentary sequence in South Yellow Sea, East Asia. Journal of Earth Science, 33, 789-801. https://doi.org/10.1007/s12583-021-1417-z. [31] Liu X.X., Ding X.Q., Zhang S.N., He H., 2017. Origin and depositional model of deep-water lacustrine sandstone deposits in the 7th and 6th members of the Yanchang Formation (Late Triassic), Binchang area, Ordos Basin, China. Petroleum Science, 14, 24-36. https://doi.org/10.1007/s12182-016-0146-x. [32] Milankovitch M.,1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy Special Publications, Belgrade, 132, pp. 1-33. [33] Murray R.W., Leinen M., 1996. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean. Geochimica et Cosmochimica Acta, 60(20), 3869-3878. https://doi.org/10.1016/0016-7037(96)00236-0. [34] Nesbitt H.W., Young G.M., McLennan S.M., Keays R.R., 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. Journal of Geology, 104, 525-542. https://doi.org/10.1086/629850. [35] Palin R.M., Weller O.M., Waters D.J., Dyck B.,2016. Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geoscience Frontiers, 7(4), 591-607. https://doi.org/10.1016/j.gsf.2015.08.005. [36] Qin Y., Zhu X.M., Zhu S.F., McElroy B., 2021. Impact of deep-time palaeoclimate on the sedimentary records and morphology of lacustrine shoal-water deltas, Upper Eocene Dongying Depression, Bohai Bay Basin, China. Sedimentology, 68(7), 3253-3278. https://doi.org/10.1111/sed.12892. [37] Ravier E., Martinez M., Pellenard P., Zanella A., Tupiner L.,2020. The milankovitch fingerprint on the distribution and thickness of bedding-parallel veins (beef) in source rocks. Marine and Petroleum Geology, 122, 104643. https://doi.org/10.1016/j.marpetgeo.2020.104643. [38] Riebe C.S., Kirchner J.W., Granger D.E., Finkel R.C., 2001. Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology, 29(6), 511-514. http://dx.doi.org/10.1130/0091-7613(2001)029<0511:STAWCC>2.0.CO;2. [39] Schnyder J., Ruffell A., Deconinck J.F., Baudin F.,2006. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining Late Jurassic-Early Cretaceous palaeoclimate change (Dorset, U.K.). Palaeogeography, Palaeoclimatology, Palaeoecology, 229(4), 303-320. https://doi.org/10.1016/j.palaeo.2005.06.027. [40] Schoepfer S.D., Shen J., Wei H., Tyson R.V., Ingall E., Algeo T.S.,2015. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Science Reviews, 149, 23-52. https://doi.org/10.1016/j.earscirev.2014.08.017. [41] Shi J.Y., Jin Z.J., Liu Q.Y., Zhang R., Huang Z.K.,2019. Cyclostratigraphy and astronomical tuning of the middle Eocene terrestrial successions in the Bohai Bay Basin, Eastern China. Global and Planetary Change, 174, 115-126. https://doi.org/10.1016/j.gloplacha.2019.01.001. [42] Shi J.Y., Jin Z.J., Liu Q.Y., Huang Z.K., Hao Y.Q.,2018. Terrestrial sedimentary responses to astronomically forced climate changes during the Early Paleogene in the Bohai Bay Basin, eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 502, 1-12. https://doi.org/10.1016/j.palaeo.2018.01.006. [43] Simon A., Poulicek M., Velimirov B., Mackenzie F.T., 1994. Comparison of anaerobic and aerobic biodegradation of mineralized skeletal structures in marine and estuarine conditions. Biogeochemistry, 25(3), 167-195. https://doi.org/10.1007/BF00024391. [44] Spychala Y.T., Eggenhuisen J.T., Tilston M., Pohl F., 2020. The influence of basin setting and turbidity current properties on the dimensions of submarine lobe elements. Sedimentology, 67(7), 3471-3491. https://doi.org/10.1111/sed.12751. [45] Sun S.Y., Liu H.M., Cao Y.C., Zhang S., Wang Y., Yang W.Q., 2017. Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its significance to shale oil: A case study of the upper Es4 Member of Well NY1 in Dongying Sag.Journal of China University of Mining and Technology, 46, 846-858 (in Chinese with English Abstract). [46] Tang L., Song Y., Pang X.Q., Jiang Z.X., Guo Y.C., Zhang H.G., Pan Z.L., Jiang H.,2020. Effects of paleo sedimentary environment in saline lacustrine basin on organic matter accumulation and preservation: A case study from the Dongpu Depression, Bohai Bay Basin, China. Journal of Petroleum Science and Engineering, 185, 106669. https://doi.org/10.1016/j.petrol.2019.106669. [47] Tyson R.V.,2001. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modelling study. Organic Geochemistry, 32(2), 333-339. https://doi.org/10.1016/S0146-6380(00)00161-3. [48] Val J., Bádenas B., Aurell M., Rosales I.,2017. Cyclostratigraphy and chemostratigraphy of a bioclastic storm-dominated carbonate ramp (late Pliensbachian, Iberian Basin). Sedimentary Geology, 355, 93-113. https://doi.org/10.1016/j.sedgeo.2017.04.007. [49] Wang D.Y., Xin B.S., Yang H., Fu J.H., Yao J.L., Zhang Y., 2014. Zircon SHRIMP U-Pb age and geological implications of tuff at the bottom of Chang-7 Member of Yanchang Formation in the Ordos Basin. Science China: Earth Sciences, 57, 2966-2977. https://doi.org/10.1007/s11430-014-4979-0. [50] Westerhold T., Röhl U., Frederichs T., Agnini C., Raff I., Zachos J.C., Wilkens R.H.,2017. Astronomical calibration of the Ypresian timescale: Implications for seafloor spreading rates and the chaotic behavior of the solar system? Climate of the Past, 13, 1129-1152. https://doi.org/10.5194/cp-13-1129-2017. [51] Wu S.T., Li S.X., Yuan X.J., Yang Z., Li A.F., Cui J.W., Pan S.Q., Mao Z.G., Su L., Zhou Y., 2021. Fluid mobility evaluation of tight sandstones in Chang 7 Member of Yanchang Formation, Ordos Basin. Journal of Earth Science, 32, 850-862. https://doi.org/10.1007/s12583-020-1050-2. [52] Yang R.C., Jin Z.J., van Loon A.J., Han Z.Z., Fan A.P., 2017. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development. AAPG Bulletin, 101, 95-117. https://doi.org/10.1306/06101615095. [53] Yin X.D., Jiang S., Chen S.J., Wu P., Gao W., Gao J.X., Shi X., 2020. Impact of rock type on the pore structures and physical properties within a tight sandstone reservoir in the Ordos Basin, NW China. Petroleum Science, 17, 896-911. https://doi.org/10.1007/s12182-020-00460-y. [54] Yuan W., Liu G.D., Zhou X.X., Xu L.M., Li C.Z., 2020. Palaeoproductivity and organic matter accumulation during the deposition of the Chang 7 organic-rich shale of the Upper Triassic Yanchang Formation, Ordos Basin, China. Sedimentology, 55(4), 3139-3156. https://doi.org/10.1002/gj.3578. [55] Yuan X.X., Guo Y.H., Yu J.F., Shen Y.L., Shao Y.B., 2013. Correlation and analysis of well-log sequence with Milankovitch cycles as rulers: A case study of coal-bearing strata of Late Permian in western Guizhou. International Journal of Mining Science and Technology, 23, 563-568. http://dx.doi.org/10.1016/j.ijmst.2013.07.015. [56] Zhang H.F., Wu X.S., Wang B., Duan Y.J., Qu Y., Chen D.F., 2016. Research progress of the enrichment mechanism of sedimentary organics in lacustrine basin.Acta Sedimentologica Sinica, 34(3), 463-477 (in Chinese with English Abstract). [57] Zhang R., Jin Z.J., Liu Q.Y., Li P., Huang Z.K., Shi J.Y., Ge Y.J., Du K.F.,2019. Astronomical constraints on deposition of the Middle Triassic Chang 7 lacustrine shales in the Ordos Basin, Central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 528, 87-98. https://doi.org/10.1016/j.palaeo.2019.04.030. [58] Zhang X., Zhang T.S., Zhao X.M., Zhu H.H., Mihal E.P., Chen L., Yong J.J., Xiao Q., Li H.J., 2021. Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician-Early Silurian in the Upper Yangtze area, South China. Petroleum Exploration and Development, 48(4), 850-863. https://doi.org/10.1016/S1876-3804(21)60071-X. [59] Zhong Q., Zhang J.G., Tang D., Jiang J.H., Shen J.J., Cai M.X., Li P.X.,2022. Research status of lacustrine mudrock deposition constrained from astronomical forcing. Journal of Palaeogeography, 11(3), 315-331. https://doi.org/10.1016/j.jop.2022.05.003. [60] Zhu R.K., Cui J.W., Deng S.H., Luo Z., Lu Y.Z., Qiu Z., 2019. High-precision dating and geological significance of Chang 7 tuff zircon of the Triassic Yanchang Formation, Ordos Basin in Central China. Acta Geologica Sinica (English Edition), 93(6), 1823-1834. https://doi.org/10.1111/1755-6724.14329. |
|
|
|