[1] Aagaard T., Orford J., Murray A.S.,2007. Environmental controls on coastal dune formation; Skallingen Spit, Denmark. Geomorphology, 83, 29-47. https://doi.org/10.1016/j.geomorph.2006.06.007.
[2] Alexander O., Munkhjargal U., Tuyagerel D., 2022. Lakes of Mongolia Geomorphology, Geochemistry and Paleoclimatology. Springer Cham, pp. 103-113. https://doi.org/10.1007/978-3-030-99120-3.
[3] Allan J.C., Kirk R.M.,2000. Wind wave characteristics at Lake Dunstan, South Island, New Zealand. New Zealand Journal of Marine and Freshwater Research, 34, 573-591. https://doi.org/10.1080/00288330.2000.9516959.
[4] Allen P.A.,2008. From landscapes into geological history. Nature, 451, 274-276. https://doi.org/10.1038/nature06586.
[5] Andrews S.D., Hartley A.J., 2015. The response of lake margin sedimentary systems to climatically driven lake level fluctuations: Middle Devonian, Orcadian Basin, Scotland. Sedimentology, 62, 1693-1716. https://doi.org/10.1111/sed.12200.
[6] Ashton A., Nienhuis J., Ells K.,2016. On a neck, on a spit: controls on the shape of free spits. Earth Surface Dynamics, 4, 193-210. https://doi.org/10.5194/esurf-4-193-2016.
[7] Botte V., Kay A., 2002. A model of the wind-driven circulation in Lake Baikal. Dynamics of Atmospheres and Oceans, 35, 131-152. https://doi.org/10.1016/S0377-0265(01)00086-0.
[8] Bouchette F., Mathieu S.,Jean-Francois, G., Clea, D., Claude, R., Abderamane, M., Patrick, M., Duringer., P., 2010. Hydrodynamics in Holocene Lake Mega-Chad. Quaternary Research, 73, 226-236. https://doi.org/10.1016/j.yqres.2009.10.010.
[9] Bouchette F., Manna M., Montalvo P., Nutz A., Schuster M., Ghienne J.-F., 2014. Growth of cuspate spits. Journal of Coastal Research, 70, 47-52. https://doi.org/10.2112/si70-009.1.
[10] Carroll A.R., Bohacs K.M., 1999. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27, 99-102. https://doi.org/10.1130/0091-7613(1999)027<0099:Scoalb>2.3.Co;2.
[11] Carson C., Hussey K.M., 1962. The oriented lakes of Arctic Alaska. The Journal of Geology, 70(4), 417-439. https://doi.org/10.1086/626834.
[12] Chen J., Jiang Z., Zhang W., Liu C., Han C., 2020. The study on the modern sedimentary system of Buha River Delta in Qinghai Lake. Geological Journal, 55, 5216-5232. https://doi.org/10.1002/gj.3735.
[13] Chen J.L., Wu H.Y., Zhu D.F., Lin C.H., Yu D.S., 2007. Tectonic evolution of the Hailar Basin and its potentials of oil‐gas exploration.Chinese Journal of Geology, 1, 147-159 (In Chinese with English abstract).
[14] Chen W.L., Dodd N.,2021. A nonlinear perturbation study of a shoreface nourishment on a multiply barred beach. Continental Shelf Research, 214, 104317. https://doi.org/10.1016/j.csr.2020.104317.
[15] Chikita K.,1992. The role of sediment-laden underflows in lake Sedimentation: Glacier-fed Peyto Lake, Canada. Journal of the Faculty of Science, Hokkaido University, Series 7, Geophysics, 9(2), pp: 211-224. http://hdl.handle.net/2115/8784.
[16] Choudhury S., Phukan S., Duarah B.P., Goswami D.C., Mehta M., 2022. Glacier inventory of the Subansiri River Basin in the Brahmaputra catchment using Landsat satellite data: A case study of the Daisaphu Glacier changes. Geological Journal, 57(12), 4939-4954. https://doi.org/10.1002/gj.4403.
[17] Clifton H.E.,2006. A Reexamination of Facies Models for Clastic Shorelines, In: Posamentier, H.W., Walker, R.G. (Eds.), Facies Models Revisited. SEPM Society for Sedimentary Geology, Oklahoma, Special Publication no. (2006), pp. 293-337.
[18] Cohen A.S.,2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, New York, pp. 528.
[19] Csanady G.,1982. On the structure of transient upwelling events. Journal of Physical Oceanography, 12(1), 84-96. https://doi.org/10.1175/1520-0485(1982)012<0084:OTSOTU>2.0.CO;2.
[20] Cui X.Y., Yang J., Hao J.X., Bu T.G., Liu Z.G., 2015. The history and evolution of Hulun Lake.Inner Mongolia Science Technology & Economy, 1, 43-47 (In Chinese with English abstract).
[21] Dally W.R., Dean R.G., ASCE M., 1984. Suspended sediment transport and beach profile evolution. Journal of Waterway, Port, Coastal, and Ocean Engineering, 110(1), 15-33. https://doi.org/10.1061/(ASCE)0733-950X(1984)110:1(15).
[22] Dam G., Surlyk F., 1992. Forced regressions in a large wave- and storm-dominated anoxic lake, Rhaetian-Sinemurian Kap Stewart Formation, East Greenland. Geology, 20, 749-752. https://doi.org/10.1130/0091-7613(1992)020<0749:Frialw>2.3.Co;2.
[23] Davis R.A., Hayes M.O., 1984. What is a Wave-Dominated Coast?. Marine Geolog, 60(1-4), 313-329. https://doi.org/10.1016/0025-3227(84)90155-5
[24] Eichentopf S., Van Der Zanden J., Cáceres I., Alsina J.M., 2019. Beach profile evolution towards equilibrium from varying initial morphologies. Journal of Marine Science and Engineering, 7, 406. https://doi.org/10.3390/jmse7110406.
[25] Fan C., Song C., Liu K., Ke L., Xue B., Chen T., Fu C., Cheng J., 2021. Century‐scale reconstruction of water storage changes of the largest lake in the Inner Mongolia Plateau using a machine learning approach. Water Resources Research, 57(2), e2020WR028831. https://doi.org/10.1029/2020wr028831.
[26] Gallagher E.L., Elgar S., Guza R., 1998. Observations of sand bar evolution on a natural beach. Journal of Geophysical Research: Oceans, 103, 3203-3215. https://doi.org/10.1029/97JC02765
[27] Gawehn M., Almar R., Bergsma E.W.J., de Vries S., Aarninkhof S., 2022. Depth Inversion from Wave Frequencies in Temporally Augmented Satellite Video. Remote Sensing, 14(8), 1847. https://doi.org/10.3390/rs14081847.
[28] Gilbert R.,1999. Calculated wave base in relation to the observed patterns of sediment deposition in Northeastern Lake Ontario. Journal of Great Lakes Research, 25, 883-891. https://doi.org/10.1016/S0380-1330(99)70785-9.
[29] Guo J., Zhang Y., Shi X., Sun B., Wu L., Wang W., 2022. Driving mechanisms of the evolution and ecological water demand of Hulun Lake in Inner Mongolia. Water, 14(21), 3415. https://doi.org/10.3390/w14213415.
[30] Håkanson L., Jansson M., 1983. Principles of Lake Sedimentology. Caldwell, New Jersey, The Blackburn Press, pp. 316. https://doi.org/10.1007/978-3-642-69274-1
[31] Ji L., Xia W., Xiang L., Wang S., 1994. Mineral composition and sedimentation rate of surficial sediments in Hulun Lake, Inner Mongolia.Journal of Lake Sciences, 3, 227-232.
[32] Jiang Z.,2018. Wind-Source-Basin Sedimentary System: Elements and Research Methods of Sedimentary Dynamics of Windfield-Source-Basin System. Springer Singapore, Singapore, pp. 29-40. https://doi.org/10.1007/978-981-10-7407-3_2.
[33] Jiang Z., Wang J., Fulthorpe C.S., Liu L., Zhang Y., Liu H.,2018. A quantitative model of paleowind reconstruction using subsurface lacustrine longshore bar deposits - An attempt. Sedimentary Geology, 371, 1-15. https://doi.org/10.1016/j.sedgeo.2018.04.004.
[34] Johnson T.C.,1984. Sedimentation in large lakes. Annual Review of Earth and Planetary Sciences, 12, 179-204. https://doi.org/10.1146/annurev.ea.12.050184.001143
[35] Keighley D.,2008. A lacustrine shoreface succession in the Albert Formation, Moncton Basin, New Brunswick. Bulletin of Canadian Petroleum Geology, 56, 235-258. https://doi.org/10.2113/gscpgbull.56.4.235.
[36] Krist F., Schaetzl R.J., 2001. Paleowind (11,000 BP) directions derived from lake spits in Northern Michigan. Geomorphology, 38, 1-18. https://doi.org/10.1016/S0169-555X(00)00040-4.
[37] Kunte P.D., Wagle B., 1991. Spit evolution and shore drift direction along South Karnataka coast, India.Giornale di Geologia, 153, 71-80.
[38] Li C., Sun B., Jia K., Zhang S., Li W., Shi X., Cordovil C.M.d.S., Pereira, L.S., 2013. Multi-band remote sensing based retrieval model and 3D analysis of water depth in Hulun Lake, China. Mathematical and Computer Modelling, 58, 771-781. https://doi.org/10.1016/j.mcm.2012.12.027.
[39] Li C., Wang J., Hu R., Yin S., Bao Y., Li Y., 2017. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009. Frontiers of Earth Science, 12(2), 420-430. https://doi.org/10.1007/s11707-017-0666-8
[40] Li S., Chen J., Xiang J., Pan Y., Huang Z., Wu Y.,2019. Water level changes of Hulun Lake in Inner Mongolia derived from Jason satellite data. Journal of Visual Communication and Image Representation, 58, 565-575. https://doi.org/10.1016/j.jvcir.2018.12.031.
[41] Li X., Bao S., Chang S., Bai M., 2009. Analysis on the cause of formation of zonal dune of Hulun Lake area in Inner Mongolia.Meteorology Journal of Inner Mongolia, 3, 30-31.
[42] Liu C., Jiang Z., Zhou X., Duan Y., Lei H., Wang X.,Atuquaye Quaye, J., 2021. Paleocene storm-related event beds in the Gaoyou Sag of the Subei Basin, eastern China: A new interpretation for these deep lacustrine sandstones. Marine and Petroleum Geology, 124, 104850. https://doi.org/10.1016/j.marpetgeo.2020.104850.
[43] May J.-H., May S.M., Marx S.K., Cohen T.J., Schuster M., Sims A.,2022. Towards understanding desert shorelines - coastal landforms and dynamics around ephemeral Lake Eyre North, South Australia. Transactions of the Royal Society of South Australia, 146, 59-89. https://doi.org/10.1080/03721426.2022.2050506.
[44] Monismith S.G.,1985. Wind-forced motions in stratified lakes and their effect on mixed-layer shear. Limnology and Oceanography, 30, 771-783. https://doi.org/10.4319/lo.1985.30.4.0771.
[45] Nordstrom K.F., Jackson N.L.,2012. Physical processes and landforms on beaches in short fetch environments in estuaries, small lakes and reservoirs: A review. Earth-Science Reviews, 111, 232-247. https://doi.org/10.1016/j.earscirev.2011.12.004.
[46] Nutz A., Schuster M., Ghienne J.F., Roquin C., Hay M.B., Rétif F., Certain R., Robin N., Raynal O., Cousineau P.A., Team S., Bouchette F., 2015. Wind-driven bottom currents and related sedimentary bodies in Lake Saint-Jean (Québec, Canada). Geological Society of America Bulletin, 127, 1194-1208. https://doi.org/10.1130/b31145.1.
[47] Nutz A., Schuster M., Ghienne J.F., Roquin C., Bouchette F., 2018. Wind-driven waterbodies: a new category of lake within an alternative sedimentologically-based lake classification. Journal of Paleolimnology, 59, 189-199. https://doi.org/10.1007/s10933-016-9894-2.
[48] Ohara N., Jones B.M., Parsekian A.D., Hinkel K.M., Yamatani K., Kanevskiy M., Rangel R.C., Breen A.L., Bergstedt H.,2022. A new Stefan equation to characterize the evolution of thermokarst lake and talik geometry. The Cryosphere, 16, 1247-1264. https://doi.org/10.5194/tc-16-1247-2022.
[49] Otvos E.G.,2000, Beach ridges — definitions and significance. Geomorphology, 32(1), 83-108. https://doi.org/10.1016/S0169-555X(99)00075-6
[50] Parsons A.J., Abrahams A.D., 2009. Geomorphology of Desert Environments. Dordrecht: Springer Netherlands, pp. 3-12. https://doi.org/10.1007/978-1-4020-5719-9.
[51] Peters S.E., Loss D.P., 2012. Storm and fair-weather wave base: A relevant distinction? Geology, 40, 511-514. https://doi.org/10.1130/g32791.1.
[52] Pochat S., Driessche J.V.D., Mouton V., Guillocheau F., 2005. Identification of Permian palaeowind direction from wave-dominated lacustrine sediments (Lodeve Basin, France). Sedimentology, 52, 809-825. https://doi.org/10.1111/j.1365-3091.2005.00697.x.
[53] Rafiuddin A.M., Faizal M., Prasad K., Cho Y.-J., Kim C.-G., Lee Y.-H., 2010. Exploiting the orbital motion of water particles for energy extraction from waves. Journal of Mechanical Science and Technology, 24, 943-949. https://doi.org/10.1007/s12206-010-0203-0.
[54] Reading H.G., Collinson J.D., 1996. Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Science, Oxford, UK, pp. 154-258.
[55] Redfield A.C.,1965. Ontogeny of a salt marsh estuary.Science, 147, 50-55.
[56] Robert H.S., Imberger J., 1980. The classification of mixed-layer dynamics of lakes of small to medium size.Journal of Physical Oceanography, 10(7), 1104-1121.
[57] Różyński G., Lin J.-G., 2015. Data-driven and theoretical beach equilibrium profiles: implications and consequences. Journal of Waterway, Port, Coastal, and Ocean Engineering, 141, 04015002. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000304.
[58] Ruessink B., Terwindt J., 2000. The behaviour of nearshore bars on the time scale of years: a conceptual model. Marine Geology, 163, 289-302. https://doi.org/10.1016/S0025-3227(99)00094-8
[59] Scheffers A.M., Kelletat D.H., 2016. Lakes of the World with Google Earth: Understanding Our Environment. Springer Nature, Switzerland, pp. 1-46. https://doi.org/10.1007/978-3-319-29617-3
[60] Schuster M., Roquin C., Duringer P., Brunet M., Caugy M., Fontugne M.,Taïsso Mackaye, H., Vignaud, P., Ghienne, J.-F., 2005. Holocene Lake Mega-Chad palaeoshorelines from space. Quaternary Science Reviews, 24, 1821-1827. https://doi.org/10.1016/j.quascirev.2005.02.001.
[61] Schuster M., Roquin C., Moussa A., Ghienne J., Duringer P., Bouchette F., Durand A., Allenbach B.,2014. shorelines of the Holocene Megalake Chad (Africa, Sahara) investigated with very high resolution satellite imagery (Pléiades): example of the Goz Kerki paleo-spit. Revue française de photogrammétrie et de télédétection, 208, 63-68. https://doi.org/10.52638/rfpt.2014.114.
[62] Schuster M., Nutz A., 2018. Lacustrine wave-dominated clastic shorelines: modern to ancient littoral landforms and deposits from the Lake Turkana Basin (East African Rift System, Kenya). Journal of Paleolimnology, 59, 221-243. https://doi.org/10.1007/s10933-017-9960-4.
[63] Schwartz R.K.,2012. Bedform, texture, and longshore bar development in response to combined storm wave and current dynamics in a nearshore helical flow system. Journal of Coastal Research, 28, 1512-1535. https://doi.org/10.2112/JCOASTRES-D-11-00102.1.
[64] Splinter K.D., Gonzalez M.V.,Oltman-Shay, J., Rutten, J., Holman, R., 2018. Observations and modelling of shoreline and multiple sandbar behaviour on a high-energy meso-tidal beach. Continental Shelf Research, 159, 33-45. https://doi.org/10.1016/j.csr.2018.03.010.
[65] Wang J., Jiang Z., Xian B., Chen J., Wang X., Xu W., Liu H., Dey S., 2018. A method to define the palaeowind strength from lacustrine parameters. Sedimentology, 65, 461-491. https://doi.org/10.1111/sed.12388.
[66] Wang W., Liu L., Ma Y., He J., 2015. Spatial distributions and environmental implications of diatom assemblages in surface sediments of Hulun Lake, China. Environmental Earth Sciences, 74, 1803-1813. https://doi.org/10.1007/s12665-015-4188-y.
[67] Xia S., Liu Z., Liu J., Chang Y., Li P., Gao N., Ye D., Wu G., Yu L., Qu L., Tong L., Li S., 2018. The controlling factors of modern facies distributions in a half-graben lacustrine rift basin: A case study from Hulun Lake, Northeastern China. Geological Journal, 53, 977-991. https://doi.org/10.1002/gj.2938.
[68] Xiao J., Chang Z., Wen R., Zhai D., Itoh S., Lomtatidze Z., 2009. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China. The Holocene, 19, 899-908. https://doi.org/10.1177/0959683609336574.
[69] Xue X., Zhang Y., Jiang Z., Wang L., Wang S., Jiang H.,2021. Wave and storm signals in a lacustrine succession and their relationship to paleowind direction (Tanan Depression, Mongolia, early Cretaceous). Sedimentary Geology, 419, 105911. https://doi.org/10.1016/j.sedgeo.2021.105911.
[70] Zăinescu F., van der Vegt, H., Storms, J., Nutz, A., Bozetti, G., May, J.-H., Cohen, S., Bouchette, F., May, S.M., Schuster, M., 2023. The role of wind-wave related processes in redistributing river-derived terrigenous sediments in Lake Turkana: A modelling study. Journal of Great Lakes Research, 49(2), 368-386. https://doi.org/10.1016/j.jglr.2022.12.013. |