Peritidal carbonate cycles induced by carbonate productivity variations: A conceptual model for an isolated Early Triassic greenhouse platform in South China
Wan Yang1,*, Dan J. Lehrmann2
1. Geology and Geophysics Program, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
2. Department of Geosciences, Trinity University, San Antonio, TX 78212, USA
Eustasy has commonly been invoked to explain peritidal carbonate cyclicity, but is difficult to explain cycles formed in a greenhouse climate when eustasy is minimal. We propose that peritidal cycles on an Early Triassic isolated carbonate platform in Guizhou, South China, were formed by hierarchical carbonate productivity variations. Most of the 149 shallowing-upward cycles are typically terminated by flooding over intertidal facies and contain rare supratidal facies and no prolonged subaerial exposure. Low-diversity benthos in the platform interior during the post-end-Permian biotic recovery were sensitive to environmental perturbations, which caused variations in benthic sediment productivity in the subtidal carbonate factory. The perturbations may be driven by changes in salinity and degree of eutrophication, or repeated platform mini-drowning by anoxic and/or CO2-charged deep water upwelled onto the banktop. They were modulated by Milankovitch orbitally-driven climatic and oceanographic factors as suggested by the hierarchical stacking pattern and spectral signals of these cycles. A one-dimensional conceptual model shows that hierarchical productivity variations alone may generate hierarchical peritidal carbonate cycles under conditions of constant subsidence and no sea-level fluctuation.
Wan Yang,Dan J. Lehrmann. Peritidal carbonate cycles induced by carbonate productivity variations: A conceptual model for an isolated Early Triassic greenhouse platform in South China[J]. Journal of Palaeogeography, 2014, 3(2): 115-126.
Wan Yang,Dan J. Lehrmann. Peritidal carbonate cycles induced by carbonate productivity variations: A conceptual model for an isolated Early Triassic greenhouse platform in South China[J]. Journal of Palaeogeography, 2014, 3(2): 115-126.
Berger, A., 1977. Support for the astronomical theory of climatic change. Nature, 269(5623): 44-45.
Berger, A., 1988. Milankovitch theory and climate. Reviews of Geophysics, 26(4): 624-657.
Berger, A., Loutre, M. F., Laskar, J., 1992. Stability of the astronomical frequencies over the Earth's history for paleoclimate studies. Science, 255(5044): 560-566.
Bureau of Geology and Mineral Exploration and Development of Guizhou Province, 1987. Regional Geology of Guizhou Province. Beijing: Geological Publishing House, 1-698 (in Chinese with English contents and brief text; geologic map scale 1:500, 000).
Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region, 1985. Regional Geology of Guangxi Zhuang Autonomous Region, People's Republic of China. Beijing: Geological Publishing House, 1-853 (in Chinese with English contents and brief text; geologic map scale 1:500,000).
Burgess, P. M., 2001. Modeling carbonate sequence development without relative sea-level oscillations. Geology, 29(12): 1127-1130.
Burgess, P. M., 2008. The nature of shallow-water carbonate lithofacies thickness distributions. Geology, 36(3): 235-238.
Chen, Z. Q., Tong, J. N., Kaiho, K., Kawahata, H., 2007. Onset of biotic and environmental recovery from the end-Permian mass extinction within 1-2 million years: A case study of the Lower Triassic of the Meishan Section, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 176-187.
Cisne, J. L., Gildner, R. F., 1988. Measurement of sea-level change in epeiric seas: The Middle Ordovician transgression in the North American midcontinent. In: Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H., Ross, C. A., van Wagoner, J. C., (eds). Sea-Level Changes: An Integrated Approach. SEPM Special Publications, 42: 183-213.
Crowley, T. J., 1994. Pangean climates. In: Klein, G. D., (ed). Pangea: Paleoclimate, Tectonics, and Sedimentation during Accretion, Zenith and Breakup of a Supercontinent. GSA Special Papers, 288: 25-40.
deMenocal, P. B., 1995. Plio-Pleistocene African climate. Science, 270(5233): 53-59.
Drummond, C. N., Wilkinson, B. H., 1993a. Aperiodic accumulation of cyclic peritidal carbonate. Geology, 21(11): 1023-1026.
2.3.CO;2 target="_blank">
Drummond, C. N., Wilkinson, B. H., 1993b. On the use of cycle thickness diagrams as records of long-term sealevel change during accumulation of carbonate sequences. Journal of Geology, 101(6): 687-702.
Feng, Z. Z., Bao, Z. D., Li, S. W., 1997. Lithofacies Palaeogeography of Early and Middle Triassic of South China. Beijing: Petroleum Industry Press, 1-222, photoplates 1-26, colour maps 1-4 (in Chinese with English preface, contents and abstracts).
Frakes, L. A., Francis, J. E., Syktus, J. I., 1992. Climate Modes of the Phanerozoic. Cambridge: Cambridge University Press, 1-274.
Ginsburg, R. N., 1971. Landward movement of carbonate mud: New model for regressive cycles in carbonates (abstract). AAPG Bulletin, 55(2): 340.
Goldhammer, R. K., Dunn, P. A., Hardie, L. A., 1990. Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: Examples from Alpine Triassic platform carbonates. GSA Bulletin, 102(5): 535-562.
2.3.CO;2 target="_blank">
Hallam, A., 1991. Why was there a delayed radiation after the end-Paleozoic mass extinctions? Historical Biology, 5(2-4): 257-262.
Hallock, P., Schlager, W., 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios, 1(4): 389-398.
Heydari, E., Hassandzadeh, J., Wade, W. J., 2000. Geochemistry of central Tethyan Upper Permian and Lower Triassic strata, Abadeh region, Iran. Sedimentary Geology, 137(1-2): 85-99.
Hinnov, L. A., Park, J., 1998. Detection of astronomical cycles in the stratigraphic record by frequency modulation (FM) analysis. Journal of Sedimentary Research, 68(4): 524-539.
Isozaki, Y., 1997. Permo-Triassic boundary superanoxia and stratified superocean: Records from the lost deep sea. Science, 276(5310): 235-238.
Jacobs, D. K., Sahagian, D. L., 1993. Climate-induced fluctuations in sea level during non-glacial times. Nature, 361(6414): 710-712.
Kent, D. V., Olsen, P. E., 2000. Magnetic polarity stratigraphy and paleolatitude of the Triassic-Jurassic Blomidon Formation in the Fundy Basin (Canada): Implications for Early Mesozoic tropical climate gradients. Earth and Planetary Science Letters, 179(2): 311-324.
Knoll, A. H., Bambach, R. K., Canfield, D. E., Grotzinger, J. P., 1996. Comparative Earth history and the Late Permian mass extinction. Science, 273(5274): 452-457.
Kozur, H. W., 1998. Some aspects of the Permian-Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 143(4): 227-272.
Kump, L. R., Pavlov, A., Arthur, M. A., 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 33(5): 397-400.
Kutzbach, J. E., 1994. Idealized Pangean climates: Sensitivity to orbital changes. In: Klein, G. D., (ed). Pangea: Paleoclimate, Tectonics, and Sedimentation during Accretion, Zenith and Breakup of a Supercontinent. GSA Special Papers, 288: 41-56.
Kutzbach, J. E., Gallimore, R. G., 1989. Pangaean climates: Megamonsoons of the megacontinent. Journal of Geophysical Research: Atmospheres, 94(D3): 3341-3357.
Kutzbach, J. E., Guetter, P. J., Washington, W. M., 1990. Simulated circulation of an idealized ocean for Pangaean time. Paleoceanography, 5(3): 299-317.
Lehrmann, D. J., 1993. The Great Bank of Guizhou: Birth, evolution and death of an isolated Triassic carbonate platform, Guizhou Province, South China [Ph. D. thesis]. Lawrence: University of Kansas, 1-457.
Lehrmann, D. J., 1999. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, south China. Geology, 27(4): 359-362.
2.3.CO;2 target="_blank">
Lehrmann, D. J., Payne, J. L., Felix, S. V., Dillett, P. M., Wang, H. M., Yu, Y. Y., Wei, J. Y., 2003. Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, South China: Implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios, 18(2): 138-152.
2.0.CO;2 target="_blank">
Lehrmann, D. J., Wei, J. Y., Enos, P., 1998. Controls on facies architecture of a large Triassic carbonate platform: The Great Bank of Guizhou, Nanpanjiang Basin, South China. Journal of Sedimentary Research, 68(2): 311-326.
Lehrmann, D. J., Yang, W., Wei, J. Y., Yu, Y. Y., Xiao, J. F., 2001. Lower Triassic peritidal cyclic limestone: An example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 173(3-4): 103-123.
Liu, Z. Y., Kutzbach, J., Wu, L. X., 2000. Modeling climate shift of El Nino variability in the Holocene. Geophysical Research Letters, 27(15): 2265-2268.
Meyer, K. M., Kump, L. R., 2008. Oceanic euxinia in Earth history: Causes and consequences. Annual Review of Earth and Planetary Sciences, 36: 251-288.
Meyer, K. M., Kump, L. R., Ridgwell, A., 2008. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology, 36(9): 747-750.
Meyers, S. R., Sageman, B. B., Hinnov, L. A., 2001. Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek Limestone Member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research, 71(4): 628-644.
M?rner, N. A., 1994. Internal response to orbital forcing and external cyclic sedimentary sequences. In: de Boer, P. L., Smith, D. G., (eds). Orbital Forcing and Cyclic Sequences. IAS Special Publications, 19: 25-33.
Osleger, D., 1991. Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls. Geology, 19(9): 917-920.
2.3.CO;2 target="_blank">
P?like, H., Shackleton, N. J., R?hl, U., 2001. Astronomical forcing in Late Eocene marine sediments. Earth and Planetary Science Letters, 193(3-4): 589-602.
Parrish, J. T., 1993. Climate of the supercontinent Pangea. Journal of Geology, 101(2): 215-233.
Parrish, J. T., Droser, M. L., Bottjer, D. J., 2001. A Triassic upwelling zone: The Shublik Formation, Arctic Alaska, U.S.A. Journal of Sedimentary Research, 71(2): 272-285.
Payne, J. L., Lehrmann, D. J., Follett, D., Seibel, M., Kump, L. R., Riccardi, A., Altiner, D., Sano, H., Wei, J. Y., 2007. Erosional truncation of uppermost Permian carbonates and implications for Permian-Triassic boundary events. GSA Bulletin, 119(7-8): 771-784.
Payne, J. L., Lehrmann, D. J., Wei, J. Y., Knoll, A. H., 2006. The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 21(1): 63-85.
Payne, J. L., Lehrmann, D. J., Wei, J. Y., Orchard, M. J., Schrag, D. P., Knoll, A. H., 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305(5683): 506-509.
Pindell, J. L., Drake, C., (eds), 1998. Paleogeographic Evolution and Non-Glacial Eustacy: Northern South America. SEPM Special Publications, 58: 1-324.
Pittet, B., Strasser, A., Mattioli, E., 2000. Depositional sequences in deep-shelf environments: A response to sea-level changes and shallow-platform carbonate productivity (Oxfordian, Germany and Spain). Journal of Sedimentary Research, 70(2): 392-407.
Pratt, B. R., James, N. P., 1986. The St George Group (Lower Ordovician) of western Newfoundland: Tidal flat island model for carbonate sedimentation in shallow epeiric seas. Sedimentology, 33(3): 313-343.
Read, J. F., Goldhammer, R. K., 1988. Use of Fischer plots to define third-order sea-level curves in Ordovician peritidal cyclic carbonates, Appalachians. Geology, 16(10): 895-899.
2.3.CO;2 target="_blank">
Read, J. F., Grotzinger, J. P., Bova, J. A., Koerschner, W. F., 1986. Models for generation of carbonate cycles. Geology, 14(2): 107-110.
2.0.CO;2 target="_blank">
Ripepe, M., Fischer, A. G., 1991. Stratigraphic rhythms synthesized from orbital variations. In: Franseen, E. K., Watney, W. L., Kendall, C. G. St., Ross, W., (eds). Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter Definition. Kansas Geological Survey Bulletin, 233: 335-344.
Sadler, P. M., 1994. The expected duration of upward-shallowing peritidal carbonate cycles and their terminal hiatuses. GSA Bulletin, 106(6): 791-802.
Schlager, W., 2005. Carbonate Sedimentology and Sequence Stratigraphy. Tulsa: SEPM, 1-200.
Schubert, J. K., Bottjer, D. J., 1995. Aftermath of the Permian-Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 116(1-2): 1-39.
Schulz, M., Sch?fer-Neth, C., 1997. Translating Milankovitch climate forcing into eustatic fluctuations via thermal deep water expansion: A conceptual link. Terra Nova, 9(5-6): 228-231.
Scotese, C. R., 1994. Early Triassic paleogeographic map. In: Klein, G. D., Beauchamp, B., Baud, A., Chuvashov, B. I., Lopez-Gamundi, O. R., Parrish, J. T., Ross, C. A., Scholle, P. A., Scotese, C. R., Watney, W. L. Introduction: Project Pangea and workshop recommendations. In: Klein, G. D., (ed). Pangea: Paleoclimate, Tectonics, and Sedimentation during Accretion, Zenith and Breakup of a Supercontinent. GSA Special Papers, 288: 7.
Scotese, C. R., Boucot, A. J., McKerrow, W. S., 1999. Gondwanan paleogeography and paleoclimatology. Journal of African Earth Sciences, 28(1): 99-114.
Spencer, R. J., Demicco, R. V., 1989. Computer models of carbonate platform cycles driven by subsidence and eustasy. Geology, 17(2): 165-168.
2.3.CO;2 target="_blank">
Tucker, M. E., Wright, V. P., Dickson, J. A. D., 1990. Carbonate Sedimentology. Oxford: Blackwell Science, 1-482.
Twitchett, R. J., Krystyn, L., Baud, A., Wheeley, J., Richoz, S., 2004. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology, 32(9): 805-808.
Wignall, P. B., Hallam, A., 1996. Facies change and the end-Permian mass extinction in S.E. Sichuan, China. Palaios, 11(6): 587-596.
Wignall, P. B., Twitchett, R. J., 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155-1158.
Wilkinson, B. H., Drummond, C. N., Diedrich, N. W., Rothman, E. D., 1999. Poisson processes of carbonate accumulation on Paleozoic and Holocene platforms. Journal of Sedimentary Research, 69(2): 338-350.
Wilkinson, B. H., Opdyke, B. N., Algeo, T. J., 1991. Time partitioning in cratonic carbonate rocks. Geology, 19(11): 1093-1096.
2.3.CO;2 target="_blank">
Woods, A. D., Bottjer, D. J., Mutti, M., Morrison, J., 1999. Lower Triassic large sea-floor carbonate cements: Their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology, 27(7): 645-648.
2.3.CO;2 target="_blank">
Yang, W., Harmsen, F., Kominz, M. A., 1995. Quantitative analysis of a peri-tidal carbonate sequence, the Middle and Upper Devonian Lost Burro Formation, Death Valley, California — A possible Milankovitch climatic record. Journal of Sedimentary Research, 65(3b): 306-322.
Yang, W., Lehrmann, D. J., 2003. Milankovitch climatic signals in Lower Triassic (Olenekian) peritidal carbonate successions, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 201(3-4): 283-306.
Zempolich, W. G., 1993. The drowning succession in Jurassic carbonates of the Venetian Alps, Italy: A record of super continent breakup, gradual eustatic rise, and eutrophication of shallow-water environments. In: Loucks, R. G., Sarg, J. F. (eds). Carbonate Sequence Stratigraphy: Recent Developments and Applications. AAPG Memoir, 57: 63-105.