Palaeoenvironmental and biostratigraphic implications of microbial mat-related structures: Examples from the modern Gulf of Cambay and the Precambrian Vindhyan Basin, India
Santanu Banerjee1, *, Subir Sarkar2, Patrick G. Eriksson3
1. Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
2. Department of Geological Sciences, Jadavpur University, Kolkata-700032, India
3. Department of Geology, University of Pretoria, Pretoria 0002, South Africa *
A stretch of the modern hypersaline coastal plain of the Gulf of Cambay was chosen to examine the distribution of the microbial mat-related structures (MRS) on siliciclastic sediments in the intertidal and supratidal zones. The abundance of MRS increases from the lower intertidal zone to the upper supratidal zone while the type of MRS records a systematic change. While the lower intertidal zone exhibits wrinkle structures, sieve-like surfaces and patchy ripples in places, the upper intertidal zone exhibits diverse MRS related to reduced current activity on the mat layer and intermittent exposure. MRS in the upper intertidal zone include wrinkle structures, sieve-like surfaces, gas domes, reticulated surfaces, multi-directional ripples, patchy ripples, rolled-up mat fragments, setulfs and occasional petee ridges and cracked mat surfaces. The lower supratidal zone is characterized by increased occurrence of petee ridges, gas domes and cracked mat surfaces compared to the upper intertidal zone. The upper supratidal zone is distinguished by the presence of abundant cracked mat surfaces, petee ridges, gas domes and wrinkle structures. The presence of cm-scale, disc-shaped microbial colonies (DMC) with a variety of internal structures is a unique feature of the Gulf of Cambay study area. While wrinkle structures occur in all the coastal zones, setulfs occur close to the boundary between the upper intertidal and lower supratidal zones. An attempt has been made to compare the distribution of MRS in this modern environment with those in the ~1.6 Ga Chorhat Sandstone of the Vindhyan Supergroup for high-resolution palaeoenvironmental interpretation. The upper part of the intertidal segment of the Chorhat Sandstone is distinguished from its lower part by the presence of abundant cracked mat surfaces, petee ridges and gas domes in the former, while wrinkle structures, Kinneyia, rolled-up mat fragments, patchy ripples and multi-directional ripples are equally abundant in both parts. The lower part of the intertidal segment of the Chorhat Sandstone is thus analogous to the upper intertidal zone of the modern Gulf of Cambay environment, while the upper part of the Chorhat intertidal segment reflects prolonged exposure close to the high tide line. The bottom-most part of the intertidal segment of the Chorhat Sandstone with fewer MRS corresponds to the lower intertidal zone at Cambay. Inferred disc-shaped microbial fossils within Vindhyan sandstones are analogous to the DMC found in the modern environment and these features do not have any biostratigraphic implication.
Santanu Banerjee,Subir Sarkar,Patrick G. Eriksson. Palaeoenvironmental and biostratigraphic implications of microbial mat-related structures: Examples from the modern Gulf of Cambay and the Precambrian Vindhyan Basin, India[J]. Journal of Palaeogeography, 2014, 3(2): 127-144.
Santanu Banerjee,Subir Sarkar,Patrick G. Eriksson. Palaeoenvironmental and biostratigraphic implications of microbial mat-related structures: Examples from the modern Gulf of Cambay and the Precambrian Vindhyan Basin, India[J]. Journal of Palaeogeography, 2014, 3(2): 127-144.
Banerjee, S., 1997. Facets of the Mesoproterozoic Semri sedimentation in Son Valley, India [Ph. D. thesis]. Jadavpur University, Kolkata, 1-137.
Banerjee, S., 2012. Discoidal microbial colonies. International Journal of Earth Science, 101(5): 1343.
Banerjee, S., Jeevankumar, S., 2005. Microbially originated wrinkle structures on sandstones and their stratigraphic context: Palaeoproterozoic Koldaha Shale, central India. Sedimentary Geology, 176(1-2): 211-224.
Banerjee, S., Sarkar, S., Eriksson, P. G., Samanta, P., 2010. Microbially related structures in siliciclastic sediment resembling Ediacaran fossils: examples from India, ancient and modern. In: Seckbach J., Oren, A., (eds). Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. Berlin: Springer-Verlag, 111-129.
Basu, A., Bickford, M. E., 2013. Contributions of zircon U-Pb geochronology to understanding the volcanic and sedimentary history of some Pur��na basins, India. Journal of Asian Earth Sciences, doi:dx.doi.org/10.1016/j.jseaes.2013.06.018 (in press).
Bose, P. K., Banerjee, S., Sarkar, S., 1997. Slope-controlled seismic deformation and tectonic framework of deposition of Koldaha Shale, India. Tectonophysics, 269(1-2): 151-169.
Bose, P. K., Sarkar, S., Banerjee, S., Chakraborty, S., 2007. Mat-related features from the Vindhyan Supergroup in central India. In: Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Catuneanu, O., Altermann, W., (eds). An Atlas of Microbial Mat Features Preserved within the Clastic Rock Record. Amsterdam: Elsevier, 181-188.
Bose, P. K., Sarkar, S., Chakraborty, S., Banerjee, S., 2001. Overview of the Meso- to Neoproterozoic evolution of the Vindhyan Basin, central India. Sedimentary Geology, 141-142: 395-419.
Bose, S., Chafetz, H. S., 2009. Topographic control on distribution of modern microbially induced sedimentary structures (MISS): A case study from Texas coast. Sedimentary Geology, 213(3-4): 136-149.
Bose, S., Chafetz, H. S., 2011. Morphology and distribution of MISS: A comparison between modern siliciclastic and carbonate settings. In: Noffke, N., Chafetz, H., (eds). Microbial Mats in Siliciclastic Depositional Systems Through Time. SEPM Special Publications, 101: 3-14.
Bouougri, E. H., Porada, H., 2007. Mat-related features from the Neoproterozoic Tizi n-Taghatine Group, Anti-Atlas belt, Morocco. In: Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O., (eds). Atlas of Microbial Mat Features Preserved within the Clastic Rock Record. Amsterdam: Elsevier, 198-207.
Bouougri, E. H., Porada, H., 2012. Wind-induced mat deformation structures in recent tidal ?ats and sabkhas of SE-Tunisia and their signi?cance for environmental interpretation of fossil structures. Sedimentary Geology, 263-264: 56-66.
Cruse, T., Harris, L. B., Rasmussen, B., 1993. Geological note: The discovery of Ediacaran trace and body fossils in the Stirling Range Formation, Western Australia: Implications for sedimentation and deformation during the 'Pan-African' orogenic cycle. Australian Journal of Earth Science, 40(3): 293-296.
De, C., 2003. Possible organisms similar to Ediacaran forms from the Bhander Group, Vindhyan Supergroup, Late Neoproterozoic of India. Journal of Asian Earth Science, 21(4): 387-395.
De, C., 2006. Ediacara fossil assemblage in the Upper Vindhyans of central India and its significance. Journal of Asian Earth Science, 27(5): 660-683.
Durand, F. R., Lech, R. R., Tortello, M. F., 1994. Nuevas evidencias paleontológicas en el basamento Precámbrico-Cámbrico del noroeste argentino. Acta Geológica Leopoldensia, 39(2): 691-701.
Eriksson, P. G., Bartman, R., Catuneanu, O., Mazumder, R., Lenhardt, N., 2012. A case study of microbial mat-related features in coastal epeiric sandstones from the Palaeoproterozoic Pretoria Group (Transvaal Supergroup, Kaapvaal craton, South Africa); The effect of preservation (reflecting sequence stratigraphic models) on the relationship between mat features and inferred palaeoenvironment. Sedimentary Geology, 263/264: 67-75.
Eriksson, P. G., Sarkar, S., Banerjee, S., Porada, H., Catuneanu, O., Samanta, P., 2010. Paleoenvironmental context of microbial mat-related structures in siliciclastic rocks: Examples from the Proterozoic of India and South Africa. In: Seckbach, J., Oren, A., (eds). Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. Berlin: Springer-Verlag, 73-108.
Fan, D. D., 2013. Marine sedimentology classifications, sedimentary features and facies associations of tidal flats. Journal of Palaeogeography, 2(1): 66-80.
Fedonkin, M. A., 1990. Systematic description of Vendian metazoan. In: Sokolov, B. S., Iwanoski, A. B., (eds). The Vendian System: Paleontology 1. Berlin: Springer-Verlag, 71-120.
Friedman, G. M., Sanders, J. E., 1974. Positive-relief bedforms on modern tidal-flat that resemble moulds of flutes and grooves: implications for geopetal criteria and for origin and classification of bedforms. Journal of Sedimentary Petrology, 44(1): 181-189.
Gehling, J. G., 1991. The case for Ediacaran fossil roots to the metazoan tree. Memoir of the Geological Society of India, 20: 181-224.
Gerdes, G., 2007. Structures left by modern microbial mats in their host sediments. In: Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O., (eds). Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record. Amsterdam: Elsevier, 5-38.
Gerdes, G., Claes, M., Dunajtschik-Piewak, K., Riege, H., Krumbein, W. E., Reineck, H. E., 1993. Contribution of microbial mats to sedimentary surface structures. Facies, 29(1): 61-74.
Gerdes, G., Krumbein, W. E., Reineck, H. E., 1994. Microbial mats as architects of sedimentary surface structures. In: Krumbein, W. E., Paterson, D. M., Stal, L. J., (eds). Biostabilization of Sediments. Oldenburg: Bibliotheks und Informationssytem der Carl von Ossietzky Universit?t Oldenburg (BIS)-Verlag, 165-182.
Glaessner M. F., 1984. The Dawn of Animal Life: A Biohistorical Study. Cambridge: Cambridge University Press, 1-296.
Glaessner, M. F., Wade, M., 1966. The Late Precambrian fossils from the Ediacara, South Australia. Palaeontology, 9(4): 599-628.
Gopalan, K., Kumar, A., Kumar, S., Vijayagopal, B., 2013. Depositional history of the Upper Vindhyan succession, central India: Time constraints from Pb-Pb isochron ages of its carbonate components. Precambrian Research, 233: 108-117.
Hagadorn, J. W., Bottjer, D. J., 1997. Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology, 25(11): 1047-1050.
2.3.CO;2 target="_blank">
Kulkarni, K. G., Borkar, V. D., 1996. Occurrence of Cochlichnus Hitchcock in the Vindhyan Supergroup (Proterozoic) of Madhya Pradesh. Journal of the Geological Society of India, 47(6): 725-729.
Kumar, S., Pandey, S. K., 2008. Arumberia and associated fossils from the Neoproterozoic Maihar Sandstone, Vindhyan Supergroup, Central India. Journal of the Palaeontological Society of India, 53(1): 83-97.
Lan, Z. W., Chen, Z. Q., 2012. Exceptionally preserved microbially induced sedimentary structures from the Ediacaran post-glacial successions in the Kimberley region, northwestern Australia. Precambrian Research, 200-203: 1-25.
Lan, Z. W., Chen, Z. Q., 2013. Proliferation of MISS-forming microbial mats after the late Neoproterozoic glaciations: Evidence from the Kimberley region, NW Australia. Precambrian Research, 224: 529-550.
MacGabhann, B. A., 2007. Discoidal fossils of the Ediacaran biota: A review of current understanding. In: Vickers-Rich, P., Komarower, P., (eds). The Rise and Fall of the Ediacaran Biota. Geological Society of London, Special Publications, 286: 297-313.
Malone, S. J., Meert, J. G., Banerjee, D. M., Pandit, M. K., Tamrat, E., Kamenov, G. D., Pradhan, V. R., Sohl, L. E., 2008. Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma closure age for the Purana Basins? Precambrian Research, 164(3-4): 137-159.
Matsushita, M., Hiramatsu, F., Kobayashi, N., Ozawa, T., Yamazaki, Y., Matsuyama, T., 2004. Colony formation in bacteria: Experiments and modelling. Biofilms, 1(4): 305-317.
Narbonne, G. M., 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33: 421-442.
Noffke, N., 1998. Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea). Geology, 26(10): 879-882.
2.3.CO;2 target="_blank">
Noffke, N., 2000. Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noire, France). Sedimentary Geology, 136(3-4): 207-215.
Noffke, N., 2010. Geobiology: Microbial Mats in Sandy Deposits from the Archean Era to Today. Berlin: Springer-Verlag, 1-194.
Noffke, N., Gerdes, G., Klenke, T., Krumbein, W. E., 2001a. Microbially induced sedimentary structures: A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71(5): 649-656.
Noffke, N., Gerdes, G., Klenke, T., Krumbein, W. E., 2001b. Microbially induced sedimentary structures indicating climatological, hydrological and depositional conditions within recent and Pleistocene coastal facies zones (Southern Tunisia). Facies, 44(1): 23-30.
Noffke, N., Hazen, R., Nhleko, N., 2003. Earth's earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology, 31(8): 673-676.
Parizot, M., Eriksson, P. G., Aifa, T., Sarkar, S., Banerjee, S., Catuneanu, O., Altermann, W., Bumby, A. J., Bordy, E. M., van Rooy, J. L., Boshoff, A. J., 2005. Suspected Microbial mat-related crack-like sedimentary structures in the Paleoproterozoic Magaliesberg Formation sandstones, South Africa. Precambrian Research, 138(3-4): 274-296.
Rasmussen, B., Bose, P. K., Sarkar, S., Banerjee, S., Fletcher, I. R., McNaughton, N. J., 2002. 1.6 Ga U-Pb zircon ages for the Chorhat Sandstone, lower Vindhyan, India: Possible implications for early evolution of animals. Geology, 30(2): 103-106.
2.0.CO;2 target="_blank">
Ray, J. S., Veizer, J., Davis, W. J., 2003. C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: Age, diagenesis, correlations and implications for global events. Precambrian Research, 121(1-2): 103-140.
Saha, S., Banerjee, S., Burley, S. D., Ghosh, A., Saraswati, P. K., 2010. The influence of flood basaltic source terrains on the efficiency of tectonic setting discrimination diagrams: An example from the Gulf of Khambhat, western India. Sedimentary Geology, 228(1-2): 1-13.
Sarkar, S., Banerjee, S., 2007. Some unusual and/or problematic features. In: Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Catuneanu, O., Altermann, W., (eds). An Atlas of Microbial Mat Features Preserved within the Clastic Rock Record. Amsterdam: Elsevier, 145-147.
Sarkar, S., Banerjee, S., Eriksson, P. G., 2004. Microbial mat features in sandstones illustrated. In: Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller, W. U., Catuneanu, O., (eds). The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 673-675.
Sarkar, S., Banerjee, S., Eriksson, P. G., Catuneanu, O., 2005. Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture: Examples from India. Sedimentary Geology, 176(1-2): 195-209.
Sarkar, S., Banerjee, S., Samanta, P., Jeevankumar, S., 2006. Microbial mat-induced sedimentary structures in siliciclastic sediments: examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, M. P., India. Journal of Earth System Science, 115(1): 49-60.
Sarkar, S., Bose, P. K., Samanta, P., Sengupta, P., Eriksson, P. G., 2008. Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation. Precambrian Research, 162(1-2): 248-263.
Sarkar, S., Samanta, P., Altermann, W., 2011. Setulfs, modern and ancient: Formative mechanism, preservation bias and palaeoenvironmental implications. Sedimentary Geology, 238(1-2): 71-78.
Schieber, J., 2004. Microbial mats in the siliciclastic rock record: A summary of the diagnostic features. In: Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller, W. U., Catuneanu, O., (eds). The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 663-672.
Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Catuneanu, O., Altermann, W., 2007. Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Amsterdam: Elsevier, 1-311.
Shapiro, J. A., 1998. Thinking about bacterial populations as multicellular organisms. Annual Review of Microbiology, 52: 81-104.
Shapiro, J. A., Dworkin, M., 1997. Bacteria as Multicellular Organisms. Oxford: Oxford University Press, 1-466.
Simonson, B. M., Carney, K. E., 1999. Roll-up structures: Evidence of in situ microbial mats in Late Archean deep shelf environments. Palaios, 14(1): 13-24.
Singh, S. P., Sinha, P. K., 2001. Vindhyan Supergroup of Bihar — An overview. In: Singh S. P., (ed). Precambrian Crustal Evolution and Mineralisation in India. Patna: South Asian Association of Economic Geologists, 107-125.
Srivastava, P., 2012. Morphodiversity, complexity and macroevolu-tion: Revealed by the megascopic life of the Palaeo-Neoproterozoic Vindhyan Supergroup, India. Geological Society of London, Special Publications, 365(1): 247-262.
Sun, W. G., 1986a. Precambrian medusoids: The Cyclomedusa plexus and Cyclomedusa-like pseudofossils. Precambrian Research, 31(4): 325-360.
Sun, W. G., 1986b. Late Precambrian scyphozoan medusa Mawsonites randellensis sp. nov. and its significance in the Ediacaran metazoan assemblage, South Australia. Alcheringa: An Australasian Journal of Palaeontology, 10(3): 169-181.
Tang, D. J., Shi, X. Y., Jiang, G., Wang, X. Q., 2011. Morphological association of microbially induced sedimentary structures (MISS) as a paleoenvironmental indicator: An example from the Proterozoic succession of the southern North China Platform. In: Noffke, N., Chafetz, H., (eds). Microbial Mats in Siliciclastic Depositional Systems Through Time. SEPM Special Publications, 101: 163-175.
Venkatachala, B. S., Sharma, M., Shukla, M., 1996. Age and life of the Vindhyans — facts and conjectures. Memoir of the Geological Society of India, 36: 137-165.
Venkateshwarlu, M., Rao, J. M., 2013. Palaeomagnetism of Bhander sediments from Bhopal Inlier, Vindhyan Supergroup. Journal of the Geological Society of India, 81(3): 330-336.
Walcott, C. D., 1914. Cambrian geology and palaeontology III No. 2—Precambrian, Algonkian algal flora. Smithsonian Miscellaneous Collection, 64: 77-156.