[1] Allison C.W., Hilgert J.W., 1986. Scale microfossils from the Early Cambrian of northwest Canada. Journal of Paleontology, 60(5), 973-1015. https://doi.org/10.1017/S0022336000022538.
[2] Arp G., Reimer A., Reitner J., 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292(5522), 1701-1704. https://doi.org/10.1126/science.1057204.
[3] Bartley J.K.,1996. Actualistic taphonomy of cyanobacteria: Implications for the Precambrian fossil record. Palaios, 571-586. https://doi.org/10.2307/3515192.
[4] Bengtson S.,1994. The advent of animal skeletons. In: Bengtson, S., (Ed.). Early Life on Earth. New York: Columbia University Press, pp. 412-425.
[5] Boedeker C., Leliaert F., Timoshkin O.A., Vishnyakov V.S., Díaz-Martínez S., Zuccarello G.C., 2018. The endemic Cladophorales (Ulvophyceae) of ancient Lake Baikal represent a monophyletic group of very closely related but morphologically diverse species. Journal of Phycology, 54(5), 616-629. https://doi.org/10.1111/jpy.12773.
[6] Bosence D., Gallois A., 2021. How do thrombolites form? Multiphase construction of lacustrine microbialites, Purbeck Limestone Group, (Jurassic), Dorset, UK. Sedimentology, 69(2), 914-953. https://doi.org/10.1111/sed.12933.
[7] Buick R., Knoll A.H., 1999. Acritarchs and microfossils from the Mesoproterozoic Bangemall Group, northwestern Australia. Journal of Paleontology, 73(5), 744-764. https://doi.org/10.1017/S0022336000040634.
[8] Butterfield N.J.,1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology, 23(2), 247-262. https://doi.org/10.1017/S009483730001681X.
[9] Cohen A.L., McConnaughey T.A., 2003. Geochemical perspectives on coral mineralization. Reviews in Mineralogy and Geochemistry, 54(1), 151-187. https://doi.org/10.2113/0540151.
[10] Cohen P.A., Schopf J.W., Butterfield N.J., Kudryavtsev A.B., Macdonald F.A., 2011. Phosphate biomineralization in mid-Neoproterozoic protists. Geology, 39(6), 539-542. https://doi.org/10.1130/G31833.1.
[11] Cohen P.A., Strauss J.V., Rooney A.D., Sharma M., Tosca N., 2017. Controlled hydroxyapatite biomineralization in an ∼810 million-year-old unicellular eukaryote. Science Advances, 3(6), e1700095. https://doi.org/10.1126/sciadv.1700095.
[12] Cuif J.P., Dauphin Y., Sorauf J.E., 2010. Biominerals and fossils through time (490 pp). UK, Cambridge: Cambridge University Press.
[13] Demoulin C.F., Lara Y.J., Cornet L., François C., Baurain D., Wilmotte A., Javaux E.J.,2019. Cyanobacteria evolution: Insight from the fossil record. Free Radical Biology and Medicine, 140, 206-223. https://doi.org/10.1016/j.freeradbiomed.2019.05.007.
[14] Dodd M.S., Papineau D., She Z., Fogel M.L., Nederbragt S., Pirajno F.,2018. Organic remains in late Palaeoproterozoic granular iron formations and implications for the origin of granules. Precambrian Research, 310, 133-152. https://doi.org/10.1016/j.precamres.2018.02.016.
[15] Drake J.L., Mass T., Stolarski J., Von Euw S., van de Schootbrugge B., Falkowski P.G., 2020. How corals made rocks through the ages. Global Change Biology, 26(1), 31-53. https://doi.org/10.1111/gcb.14912.
[16] Elicki O.,1999. Palaeoecological significance of calcimicrobial communities during ramp evolution: An example from the Lower Cambrian of Germany. Facies, 41(1), 27-39. https://doi.org/10.1007/BF02537458.
[17] Fairchild I.J., Knoll A.H., Swett K., 1991. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard). Precambrian Research, 53(3-4), 165-197. https://doi.org/10.1016/0301-9268(91)90071-H.
[18] Feng Q., Gong Y.M., Riding R., 2010. Mid-Late Devonian calcified marine algae and cyanobacteria, South China. Journal of Paleontology, 84(4), 569-587. https://doi.org/10.1666/09-108.1.
[19] Fournie D.,1967. Les Porostromata du PaleozoÏque. Etude bibliographique.Bulletin Du Centre de Recherches, Pau-SNPA, 1(1), 21-41.
[20] Gal A., Weiner S., Addadi L., 2015. A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion. CrystEngComm, 17(13), 2606-2615. https://doi.org/10.1039/C4CE01474J.
[21] Golubic S., Seong-Joo L., 1999. Early cyanobacterial fossil record: Preservation, palaeoenvironments and identification. European Journal of Phycology, 34(4), 339-348. https://doi.org/10.1080/09670269910001736402.
[22] Gould S.J., Vrba E.S., 1982, Exaptation — A missing term in the science of form. Paleobiology, 8, 4-15. https://doi.org/10.1017/S0094837300004310.
[23] HBGMR (Hebei Bureau of Geology and Mineral Resources), 1965. Geological Map of Xinglong: K-50-XXXIV, scale 1:200,000, geological map, 1 sheet (in Chinese).
[24] HBGMR (Hebei Bureau of Geology and Mineral Resources), 1967. Geological Map of Xuanhua: K-50-XXXII, scale 1:200,000, geological map, 1 sheet (in Chinese).
[25] Heimann A., Johnson C.M., Beard B.L., Valley J.W., Roden E.E., Spicuzza M.J., Beukes N.J.,2010. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ∼2.5 Ga marine environments. Earth and Planetary Science Letters, 294(1-2), 8-18. https://doi.org/10.1016/j.epsl.2010.02.015.
[26] Hodgskiss M.S., Dagnaud O.M., Frost J.L., Halverson G.P., Schmitz M.D.,Swanson-Hysell, N.L., Sperling, E.A., 2019. New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group. Earth and Planetary Science Letters, 520, 141-152. https://doi.org/10.1016/j.epsl.2019.05.023.
[27] Hofmann H.J.,1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics.Journal of Paleontology, 1040-1073.
[28] Horodyski R.J., Donaldson J.A., 1980. Microfossils from the Middle Proterozoic Dismal Lakes groups, arctic Canada. Precambrian Research, 11(2), 125-159. https://doi.org/10.1016/0301-9268(80)90043-1.
[29] Horodyski R.J., Donaldson J.A., 1983. Distribution and significance of microfossils in cherts of the Middle Proterozoic Dismal Lakes Group, District of Mackenzie, Northwest Territories, Canada. Journal of Paleontology, 57(2), 271-288. https://doi.org/10.2307/1304652.
[30] Horodyski R.J., Mankiewicz C., 1990. Possible Late Proterozoic skeletal algae from the Pahrump Group, Kingston Range, southeastern California.American Journal of Science, 290, 149-169.
[31] Kah L.C., Riding R., 2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35(9), 799-802. https://doi.org/10.1130/G23680A.1.
[32] Kempe S., Kazmierczak J., 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes.Bulletin de La Institut Océanographique (Monaco), 13, 61-117.
[33] Klein C., Beukes N.J., Schopf J.W., 1987. Filamentous microfossils in the early Proterozoic Transvaal Supergroup: Their morphology, significance, and paleoenvironmental setting. Precambrian Research, 36(1), 81-94. https://doi.org/10.1016/0301-9268(87)90018-0.
[34] Knoll A.H., Swett K., Mark J., 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 531-570. https://doi.org/10.1017/S0022336000030663.
[35] Knoll A.H.,2003. Biomineralization and evolutionary history. Reviews in Mineralogy and Geochemistry, 54(1), 329-356. https://doi.org/10.2113/0540329.
[36] Knoll A.H., Ohta Y., 1988. Microfossils in metasediments from Prins Karls Forland, western Svalbard.Polar Research, 6(1), 59-67.
[37] Knoll A.H., Strother P.K., Rossi S., 1988. Distribution and diagenesis of microfossils from the Lower Proterozoic Duck Creek Dolomite, Western Australia. Precambrian Research, 38(3), 257-279. https://doi.org/10.1016/0301-9268(88)90005-8.
[38] Knoll A.H., Swett K., Burkhardt E., 1989. Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen. Journal of Paleontology, 63(2), 129-145. https://doi.org/10.1017/S002233600001917X.
[39] Knoll A.H., Fairchild I.J., Swett K., 1993. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition. Palaios, 512-525. https://doi.org/10.2307/3515029.
[40] Krajina B.A., Proctor A.C., Schoen A.P., Spakowitz A.J., Heilshorn S.C.,2018. Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature. Progress in Materials Science, 91, 1-23. https://doi.org/10.1016/j.pmatsci.2017.08.001.
[41] Leadbeater B.S., Riding R., 1986. Biomineralization in lower plants and animals. The Systematics Association (Vol. 30). Oxford: Clarendon Press.
[42] Lis H., Shaked Y., 2009. Probing the bioavailability of organically bound iron: A case study in the Synechococcus-rich waters of the Gulf of Aqaba. Aquatic Microbial Ecology, 56(2-3), 241-253. https://doi.org/10.3354/ame01347.
[43] Liu A., Tang D., Shi X., Zhou X., Zhou L., Shang M., Li Y., Fang H.,2020a. Mesoproterozoic oxygenated deep seawater recorded by early diagenetic carbonate concretions from the Member IV of the Xiamaling Formation, North China. Precambrian Research, 341, 105667. https://doi.org/10.1016/j.precamres.2020.105667.
[44] Liu A.Q., Tang D.J., Shi X.Y., Zhou L.M., Zhou X.Q., Shang M.H., Li Y., Song H.Y., 2019. Growth mechanisms and environmental implications of carbonate concretions from the ∼1.4 Ga Xiamaling Formation, North China. Journal of Palaeogeography, 8(1), 1-16. https://doi.org/10.1186/s42501-019-0036-4.
[45] Liu L., Liang L., Wu Y., Zhou X., Jia L., Riding R.,2020b. Ordovician cyanobacterial calcification: A marine fossil proxy for atmospheric CO2. Earth and Planetary Science Letters, 530, 115950. https://doi.org/10.1016/j.epsl.2019.115950.
[46] Livingston B.T., Killian C.E., Wilt F., Cameron A., Landrum M.J., Ermolaeva O., Sapojnikov V., Maglott D.R., Buchanane A.M., Ettensohn C.A.,2006. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Developmental Biology, 300(1), 335-348. https://doi.org/10.1016/j.ydbio.2006.07.047.
[47] Lowenstam H.A., Weiner S., 1989. Biomineralization processes. In: On biomineralization. Oxford University Press.
[48] Luo G., Hallmann C., Xie S., Ruan X., Summons R.E., 2015. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation.Geochimica et Cosmochimica Acta, 151, 150-167.
[49] Lyu D., Deng Y., Wang H., Zhang F., Ren R., Gao Z., Zhou C., Luo Z., Wang X., Bi L., Zhang S., Canfield D.E.,2021. Using cyclostratigraphic evidence to define the unconformity caused by the Mesoproterozoic Qinyu Uplift in the North China Craton. Journal of Asian Earth Sciences, 206, 104608. https://doi.org/10.1016/j.jseaes.2020.104608.
[50] Ma J., Shi X., Lechte M., Zhou X., Wang Z., Huang K., Rudmin M., Tang D., 2022. Mesoproterozoic seafloor authigenic glauconite-berthierine: Indicator of enhanced reverse weathering on early Earth. American Mineralogist, 107(1), 116-130. https://doi.org/10.2138/am-2021-7904.
[51] Macdonald F.A., Cohen P.A., Dudás F.Ő., Schrag D.P., 2010. Early Neoproterozoic scale microfossils in the lower Tindir Group of Alaska and the Yukon Territory. Geology, 38(2), 143-146. https://doi.org/10.1130/G25637.1.
[52] Mankiewicz C.,1992. Obruchevella and other microfossils in the Burgess Shale: preservation and affinity. Journal of Paleontology, 66(5), 717-729. https://doi.org/10.1017/S0022336000020758.
[53] Mann S.,1988. Molecular recognition in biomineralization. Nature, 332(6160), 119-124. https://doi.org/10.1038/332119a0.
[54] Mann S.,2001. Biomineralization: Principles and concepts in bioinorganic materials chemistry. Oxford University Press, pp. 1-198.
[55] Maslov V.P.,1956. The fossil calcareous algae of the USSR: Transactions of the USSR Academy of Sciences.Geological Science Sections, 160, 1-301 (in Russian).
[56] Meldrum F.C.,2003. Calcium carbonate in biomineralisation and biomimetic chemistry. International Materials Reviews, 48(3), 187-224. https://doi.org/10.1179/095066003225005836.
[57] Meng Q.R., Wei H.H., Qu Y.Q., Ma S.X.,2011. Stratigraphic and sedimentary records of the rift to drift evolution of the northern North China craton at the Paleo- to Mesoproterozoic transition. Gondwana Research, 20(1), 205-218. https://doi.org/10.1016/j.gr.2010.12.010.
[58] Merz M.U.,1992. The biology of carbonate precipitation by cyanobacteria. Facies, 26(1), 81-101. https://doi.org/10.1007/BF02539795.
[59] Merz-Preiß M., Riding R., 1999. Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemical thresholds and biological processes. Sedimentary Geology, 126(1-4), 103-124. https://doi.org/10.1016/S0037-0738(99)00035-4.
[60] Min X., Hua H., Liu L., Sun B., Cui Z., Dai Q.,2020. A diverse calcified cyanobacteria assemblage in the latest Ediacaran. Precambrian Research, 342, 105669. https://doi.org/10.1016/j.precamres.2020.105669.
[61] Moore K.R., Bosak T., Macdonald F., Du K., Newman S.A., Lahr D.J., Pruss S.B.,2017. Pyritized Cryogenian cyanobacterial fossils from arctic Alaska. Palaios, 32(12), 769-778. https://doi.org/10.2110/palo.2017.063.
[62] Morais L., Fairchild T.R., Lahr D.J., Rudnitzki I.D., Schopf J.W., Garcia A.K., Kudryavtsev A.B., Romero G. R.,2017. Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization. Journal of Paleontology, 91(3), 393-406. https://doi.org/10.1017/jpa.2017.16.
[63] Murdock D.J.,2020. The ‘biomineralization toolkit’ and the origin of animal skeletons. Biological Reviews, 95(5), 1372-1392. https://doi.org/10.1111/brv.12614.
[64] Nicholson H.A., Etheridge R., 1878. A Monograph of the Silurian Fossils of the Girvan District in Ayrshire with Special Reference to Those Contained in the "Grey Collection" (Vol. 1). Edinburgh: W. Blackwood and Sons.
[65] Peel J.S.,1988. Spirellus and related helically coiled microfossils (cyanobacteria) from the Lower Cambrian of North Greenland. Rapport Grønlands Geologiske Undersøgelse, 137, 5-32. https://doi.org/10.34194/rapggu.v137.8009.
[66] Penny A.M., Wood R., Curtis A., Bowyer F., Tostevin R., Hoffman K.H., 2014. Ediacaran metazoan reefs from the Nama Group, Namibia. Science, 344(6191), 1504-1506. https://doi.org/10.1126/science.1253393.
[67] Pentecost A.,2005. Travertine. Berlin: Springer.
[68] Planavsky N., Reid R.P., Lyons T.W., Myshrall K.L., Visscher P.T., 2009. Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology, 7(5), 566-576. https://doi.org/10.1111/j.1472-4669.2009.00216.x.
[69] Porter S.,2011. The rise of predators. Geology, 39(6), 607-608. https://doi.org/10.1130/focus062011.1.
[70] Porter S.M., Knoll A.H., 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 26(3), 360-385. https://doi.org/10.1666/0094-8373(2000)026<0360:TAITNE>2.0.CO;2.
[71] Porter S.M., Meisterfeld R., Knoll A.H., 2003. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae. Journal of Paleontology, 77(3), 409-429. https://doi.org/10.1666/0022-3360(2003)077<0409:VMFTNC>2.0.CO;2.
[72] Riding R.,2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4(4), 299-316. https://doi.org/10.1111/j.1472-4669.2006.00087.x.
[73] Riding R.,1979. Origin and diagenesis of lacustrine algal bioherms at the margin of the Ries crater, Upper Miocene, southern Germany. Sedimentology, 26(5), 645-680. https://doi.org/10.1111/j.1365-3091.1979.tb00936.x.
[74] Riding R.,1991. Calcified cyanobacteria. In: Calcareous Algae and Stromatolites. Berlin: Springer, pp. 55-87.
[75] Riding R.,2012. A hard life for cyanobacteria. Science, 336(6080), 427-428. https://doi.org/10.1126/science.1221055.
[76] Riding R., Fan J., 2001. Ordovician calcified algae and cyanobacteria, northern Tarim Basin subsurface, China. Palaeontology, 44(4), 783-810. https://doi.org/10.1111/1475-4983.00201.
[77] Riding R., Voronova L., 1984. Assemblages of calcareous algae near the Precambrian/Cambrian boundary in Siberia and Mongolia. Geological Magazine, 121(3), 205-210. https://doi.org/10.1017/S0016756800028260.
[78] Riedman L.A., Porter S.M., Czaja A.D., 2021. Phosphatic scales in vase-shaped microfossil assemblages from Death Valley, Grand Canyon, Tasmania, and Svalbard. Geobiology, 19(4), 364-375. https://doi.org/10.1111/gbi.12439.
[79] Rose A.L., Waite T.D., 2005. Reduction of organically complexed ferric iron by superoxide in a simulated natural water. Environmental Science & Technology, 39(8), 2645-2650. https://doi.org/10.1021/es048765k.
[80] Rudolf M., Kranzler C., Lis H., Margulis K., Stevanovic M., Keren N., Schleiff E., 2015. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120. Molecular Microbiology, 97(3), 577-588. https://doi.org/10.1111/mmi.13049.
[81] Schopf J.W.,1968. Microflora of the Bitter Springs Formation, late Precambrian, central Australia.Journal of Paleontology, 42(3), 651-688.
[82] Schopf J.W.,1992. Proterozoic prokaryotes: Affinities, geologic distribution, and evolutionary trends. In: Schopf, J.W., Klein. C., (Eds.). The Proterozoic Biosphere: A Multidisciplinary Study. UK, Cambridge: Cambridge University Press, pp. 195-218.
[83] Schopf J.,2006. Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 869-885. https://doi.org/10.1098/rstb.2006.1834.
[84] Seong-Joo L., Golubic S., 1998. Multi-trichomous cyanobacterial microfossils from the Mesoproterozoic Gaoyuzhuang Formation, China: Paleoecological and taxonomic implications. Lethaia, 31(3), 169-184. https://doi.org/10.1111/j.1502-3931.1998.tb00505.x.
[85] Sergeev V.N., Knoll A.H., Kolosova S.P., Kolosov P.N., 1994. Microfossils in cherts from the Mesoproterozoic (Middle Riphean) Debengda Formation, the Olenek Uplift, northeastern Siberia.Stratigraphy and Geological Correlation, 2(1), 19-33.
[86] Sergeev V.N., Gerasimenko L.M., Zavarzin G.A., 2002. The Proterozoic history and present state of cyanobacteria. Microbiology, 71(6), 623-637. https://doi.org/10.1023/A:1021415503436.
[87] Sergeev V.N., Sharma M., Shukla Y., 2012. Proterozoic fossil cyanobacteria.Palaeobotanist, 61, 189-358.
[88] Sergeev V.N., Schopf J.W., 2010. Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: The marine biosphere on the eve of metazoan radiation. Journal of Paleontology, 84(3), 363-401. https://doi.org/10.1666/09-133.1.
[89] Sergeev Vladimir N., Knoll A.H., Grotzinger J.P., 1995. Paleobiology of the Mesoproterozoic Billyakh Group, Anabar uplift, northern Siberia. Journal of Paleontology, 69(S39), 1-37. https://doi.org/10.1017/S0022336000062375.
[90] She Z., Strother P.,McMahon, G., Nittler, L.R., Wang, J., Zhang, J., Sang, L., Ma, C., Papineau, D., 2013. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites I: In situ micro-analysis of textures and composition. Precambrian Research, 235, 20-35. https://doi.org/10.1016/j.precamres.2013.05.011.
[91] Sheldon N.D.,2006. Precambrian paleosols and atmospheric CO2 levels. Precambrian Research, 147(1-2), 148-155. https://doi.org/10.1016/j.precamres.2006.02.004.
[92] Shi M., Feng Q., Khan M.Z., Zhu S.,2017. An eukaryote-bearing microbiota from the early Mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and its significance. Precambrian Research, 303, 709-726. https://doi.org/10.1016/j.precamres.2017.09.013.
[93] Simpson G.G.,1944. Tempo and Mode in Evolution. Columbia University Press, New York City, NY, USA. 217 pages, 36 figures, 19 tables.
[94] Stefurak E.J., Lowe D.R., Zentner D., Fischer W.W., 2014. Primary silica granules — A new mode of Paleoarchean sedimentation. Geology, 42(4), 283-286. https://doi.org/10.1130/G35187.1.
[95] Swanner E.D., Bayer T., Wu W., Hao L., Obst M., Sundman A., Byrne J.M., Michel F.M., Kleinhanns I.C., Kappler A., Schoenberg R., 2017. Iron isotope fractionation during Fe (II) oxidation mediated by the oxygen-producing marine cyanobacterium Synechococcus PCC 7002. Environmental Science & Technology, 51(9), 4897-4906. https://doi.org/10.1021/acs.est.6b05833.
[96] Swett K., Knoll A.H., 1985. Stromatolitic bioherms and microphytolites from the late Proterozoic Draken Conglomerate Formation, Spitsbergen. Precambrian Research, 28(3-4), 327-347. https://doi.org/10.1016/0301-9268(85)90037-3.
[97] Tang D., Shi X., Jiang G., Zhou X., Shi Q., 2017. Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11), 2317-2332. https://doi.org/10.2138/am-2017-6136.
[98] Tang D., Shi X., Jiang G., Wu T., Ma J., Zhou X.,2018. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and environmental implications. Gondwana Research, 58, 1-15. https://doi.org/10.1016/j.gr.2018.01.013.
[99] Tang D., Ma J., Shi X., Lechte M., Zhou X., 2020a. The formation of marine red beds and iron cycling on the Mesoproterozoic North China Platform. American Mineralogist, 105(9), 1412-1423. https://doi.org/10.2138/am-2020-7406.
[100] Tang Q., Pang K., Yuan X., Xiao S., 2020b. A one-billion-year-old multicellular chlorophyte. Nature Ecology & Evolution, 4(4), 543-549. https://doi.org/10.1038/s41559-020-1122-9.
[101] Thompson J.B., Ferris F.G., 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18(10), 995-998. https://doi.org/10.1130/0091-7613(1990)018<0995:CPOGCA>2.3.CO;2.
[102] Thorne R.J., Schneider K., Hu H., Cameron P.J.,2015. Iron reduction by the cyanobacterium Synechocystis sp. PCC 6803. Bioelectrochemistry, 105, 103-109. https://doi.org/10.1016/j.bioelechem.2015.05.015.
[103] Tian H., Zhang J., Li H., Su W., Zhou H., Yang L., Xiang Z., Geng J., Liu H., Zhu S., Xu Z., 2015. Zircon LA-MC-ICPMS U-Pb dating of tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and its geological significance.Acta Geoscientica Sinica, 36(5), 647-658 (in Chinese with English Abstract).
[104] Tosti F., Riding R., 2017. Fine-grained agglutinated elongate columnar stromatolites: Tieling Formation, ca 1420 Ma, North China. Sedimentology, 64(4), 871-902. https://doi.org/10.1111/sed.12336.
[105] Turner E.C.,2009. Mesoproterozoic carbonate systems in the Borden Basin, Nunavut. Canadian Journal of Earth Sciences, 46(12), 915-938. https://doi.org/10.1139/E09-062.
[106] Turner E.C.,2021. Possible poriferan body fossils in Early Neoproterozoic microbial reefs. Nature, 596(7870), 87-91. https://doi.org/10.1038/s41586-021-03773-z.
[107] Turner E.C., Narbonne G.M., James N.P., 1993. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada. Geology, 21(3), 259-262. https://doi.org/10.1130/0091-7613(1993)021<0259:NRMFTL>2.3.CO;2.
[108] Viney C.,2004. Self-assembly as a route to fibrous materials: Concepts, opportunities and challenges. Current Opinion in Solid State and Materials Science, 8(2), 95-101. https://doi.org/10.1016/j.cossms.2004.04.001.
[109] Weiner S., Dove P.M., 2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54(1), 1-29. https://doi.org/10.2113/0540001.
[110] Westbroek P.,De Jong, E.W., 1983. Biomineralization and Biological Metal Accumulation. Biological and Geological Perspectives (Papers presented at the Fourth International Symposium on Biomineralization, Renesse, The Netherlands, June 2-5, 1982). Dordrecht-Boston-London, D. Reidel Publishing Company, pp. 1-533.
[111] Wood R.,2018. Exploring the drivers of early biomineralization. Emerging Topics in Life Sciences, 2(2), 201-212. https://doi.org/10.1042/ETLS20170164.
[112] Wu M.T., Fang H., Sun L.F., Shi X.Y., Tang D.J.,2021. Variations in precipitation pathways of Mesoproterozoic shallow seawater carbonates from North China Platform: Response in seawater redox fluctuations? Journal of Palaeogeography (Chinese Edition), 23(4), 703-722 (in Chinese with English Abstract). https://doi.org/10.7605/gdlxb.2021.04.050.
[113] Yun Z.,1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (Early Sinian: Riphean), Hebei, China. Journal of Paleontology, 485-506. https://www.jstor.org/stable/1304265.
[114] Zhang S., Wang X., Hammarlund E.U., Wang H., Costa M.M., Bjerrum C.J., Connelly J.N., Zhang B., Bian L., Canfield D.E., 2015. Orbital forcing of climate 1.4 billion years ago. Proceedings of the National Academy of Sciences, 112(12), E1406-E1413. https://doi.org/10.1073/pnas.1502239112.
[115] Zhang S., Wang X., Wang H., Bjerrum C.J., Hammarlund E.U., Costa M.M., Connelly J.N., Zhang B., Su J., Canfield D.E., 2016. Sufficient oxygen for animal respiration 1,400 million years ago. Proceedings of the National Academy of Sciences, 113(7), 1731-1736. https://doi.org/10.1073/pnas.1523449113.
[116] Zhang S., Wang X., Wang H., Bjerrum C.J., Hammarlund E.U., Haxen E.R., Wen H., Ye Y., Canfield D.E., 2019. Paleoenvironmental proxies and what the Xiamaling Formation tells us about the mid-Proterozoic ocean. Geobiology, 17(3), 225-246. https://doi.org/10.1111/gbi.12337.
[117] Zhang S.H., Zhao Y., Li X.H., Ernst R.E., Yang Z.Y.,2017. The 1.33-1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 465, 112-125. https://doi.org/10.1016/j.epsl.2017.02.034.
[118] Zhang Z., Li S., 1985. Microflora from the Gaoyuzhuang Formation (Changchengian System) of Western Yanshan Range, North China.Acta Micropalaeontologica Sinica, 2, 219-230 (in Chinese with English Abstract).
[119] Zhao C., Shi M., Feng Q., Ye Y., Khan M.Z., Feng F.,2020. New study of microbial mats from the Mesoproterozoic Jixian Group, North China: Evidence for photosynthesis and oxygen release. Precambrian Research, 344, 105734. https://doi.org/10.1016/j.precamres.2020.105734. |