[1] Abarzúa A.M., Vargas C., Jarpa L., Gutiérrez N.M., Hinojosa L.F., Paula S.,2016. Evidence of Neogene wildfires in central Chile: Charcoal records from the Navidad Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 76-85. https://doi.org/10.1016/j.palaeo.2016.06.036.
[2] Anderson R.C.,2006. Evolution and origin of the Central Grassland of North America: Climate, fire, and mammalian grazers.Journal of the Torrey Botanical Society, 133, 626-647.
[3] Anderson R.S., Allen C.D., Toney J.L., Jass R.B., Bair A.N., 2008. Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA.International Journal of Wildland Fire, 17, 96-114.
[4] Argus G.W.,2010. Salix. In: Flora of North America Editorial Committee (Ed.), Flora of North America, Magnoliophyta: Salicaceae to Brassicaceae. Oxford University Press, New York, vol. 7, pp. 23-51.
[5] Arihan O., Güvenҫ A., 2011. Studies on the anatomical structure of stems of willow (Salix L.) species (Salicaceae) growing in Ankara province, Turkey. Turkish Journal of Botany, 35, 535-551.
[6] Blokhina N.I., Bondarenko O.V., 2016. Fossil wood of Pinus priamurensis sp. nov.(Pinaceae) from the Miocene deposits of the Erkovetskii Brown Coal Field, Amur Region. Paleontological Journal, 50(3), 311-318. https://doi.org/10.1134/S0031030116030023.
[7] Boufford D.E.,2014. Biodiversity hotspot: China’s Hengduan Mountains.Arnoldia, 72, 24-35.
[8] Chen D., Pereira J.M.C., Masiero A., Pirotti F., 2017. Mapping fire regimes in China using MODIS active fire and burned area data.Applied Geography, 85, 14-26.
[9] Chen F., Fan Z.F., Niu S.K., Zheng J.M., 2014. The influence of precipitation and consecutive dry days on burned areas in Yunnan Province, southwestern China. Advances in Meteorology, 2014, 748923. https://doi.org/10.1155/2014/748923.
[10] Clark M.K., House M.A., Royden L.H., Whipple K.X., Burchfiel B.C., Zhang X., Tang W., 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33(6), 525-528. https://doi.org/10.1130/G21265.1.
[11] Cope M.J., Chaloner W.G., 1980. Fossil charcoal as evidence of past atmospheric composition. Nature, 283(5748), 647-649. https://doi.org/10.1038/283647a0.
[12] Daniau A.L., Harrison S.P., Bartlein P.J.,2010. Fire regimes during the Last Glacial. Quaternary Science Reviews, 29(21), 2918-2930. https://doi.org/10.1016/j.quascirev.2009.11.008.
[13] Dorofeev P.I.,1963. The Tertiary Floras of Western Siberia. Izdatielstwo Akademii Nauk SSSR, Moskva-Leningrad, pp. 1-286 (in Russian with English summary).
[14] Du Y., Yang X.Y., 2015. Seeds of the Qinghai-Tibet Plateau. Yunnan Science and Technology Press, Kunming, pp. 1-798 (in Chinese).
[15] Dyer J.M.,2006. Revisiting the deciduous forests of eastern North America. BioScience, 56(4), 341-352. https://doi.org/10.1641/0006-3568(2006)56[341:RTDFOE]2.0.CO;2.
[16] Edwards A., Russell-Smith J., Meyer M., 2015. Contemporary fire regime risks to key ecological assets and processes in north Australian savannas. International Journal of Wildland Fire, 24(6), 857-870. https://doi.org/10.1071/WF14197.
[17] El Atfy H., Anan T., Jasper A., Uhl D., 2019. Repeated occurrence of palaeo-wildfires during deposition of the Bahariya Formation (early Cenomanian) of Egypt. Journal of Palaeogeography, 8(4), 332-345. https://doi.org/10.1186/s42501-019-0042-6.
[18] Fang Z., Zhao S., Skvortsov A.K., 1999. Salicaceae. In: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China, vol. 4. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp. 139-274.
[19] Ge H.R., Li D.Y., 1999. Cenozoic coal-bearing basins and coal-forming regularity in West Yunnan. Yunnan Science and Technology Press, Kunming, pp. 1-88 (in Chinese with English summary).
[20] Gregor T., Seidling W., 1997. 50 years' succession on a woodland clearing in the mountain area of eastern Hesse.Forstwissenschaftliches Centralblatt, 116, 218-231.
[21] He Y., Li N., Wang Z., Wang H., Yang G., Xiao L., Wu J., Sun B.,2014. Quercus yangyiensis sp. nov. from the late Pliocene of Baoshan, Yunnan and its paleoclimatic significance. Acta Geologica Sinica (English Edition), 88(3), 738-747. https://doi.org/10.3969/j.issn.1000-9515.2014.03.004.
[22] Herbert T.D., Lawrence K.T., Tzanova A., Peterson L.C., Caballero-Gill R.P., Kelly C.S., 2016. Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience, 9(11), 843-847. https://doi.org/10.1038/NGEO2813.
[23] Hoke G.D., Jing L.Z., Hren M.T., Wissink G.K., Garzione C.N.,2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth and Planetary Science Letters, 394, 270-278. https://doi.org/10.1016/j.epsl.2014.03.007.
[24] Huang Y.J., Chen W.Y., Jacques F.M.B., Liu, Y.S.C., Utescher, T., Su, T., Ferguson, D.K., Zhou, Z.K., 2015. Late Pliocene temperatures and their spatial variation at the southeastern border of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 111, 44-53. https://doi.org/10.1016/j.jseaes.2015.04.048.
[25] Huang, Y.J., Jacques, F.M.B., Liu, Y.S., Su, T., Xing, Y.W., Xiao, X.H., Zhou, Z.K., 2012. New fossil endocarps of Sambucus(Adoxaceae) from the upper Pliocene in SW China. Review of Palaeobotany and Palynology, 171, 152-163. https://doi.org/10.1016/j.revpalbo.2011.11.008.
[26] Huang Y.J., Jia L.B., Su T., Zhu H., Momohara A., Gu Z.J., Zhou Z.K.,2020. A warm-temperate forest of mixed coniferous type from the upper Pliocene Sanying Formation (southeastern edge of Tibetan Plateau) and its implications for palaeoecology and palaeoaltimetry. Palaeogeography, Palaeoclimatology, Palaeoecology, 538, 109486. https://doi.org/10.1016/j.palaeo.2019.109486.
[27] Huang Y.J., Jia L.B., Wang Q., Mosbrugger V., Utescher T., Su T., Zhou Z.K.,2016. Cenozoic plant diversity of Yunnan: A review. Plant Diversity, 38(6), 271-282. https://doi.org/10.1016/j.pld.2016.11.004.
[28] Huang Y.J., Shen H., Jia L.B., Li S.F., Su T., Nam G.S., Zhu H., Zhou Z.K.,2021. Macroscopic fossil charcoals as proxy of a local fire linked to conifer-rich forest from the late Pliocene of northwestern Yunnan, Southwest China. Palaeoworld, 30(3), 551-561. https://doi.org/10.1016/j.palwor.2020.07.005.
[29] Hubau W.,Van den Bulcke, J., Kitin, P., Mees, F., Baert, G., Verschuren, D., Nsenga, L., Van Acker, J., Beeckman, H., 2013. Ancient charcoal as a natural archive for paleofire regime and vegetation change in the Mayumbe, Democratic Republic of the Congo. Quaternary Research, 80(2), 326-340. https://doi.org/10.1016/j.yqres.2013.04.006.
[30] Huffman D.W., Zegler T.J., Fulé P.Z., 2015. Fire history of a mixed conifer forest on the Mogollon Rim, northern Arizona, USA. International Journal of Wildland Fire, 24(5), 680-689. https://doi.org/10.1071/WF14005.
[31] Iglesias V., Markgraf V., Whitlock C.,2016. 17,000 years of vegetation, fire and climate change in the eastern foothills of the Andes (lat. 44°S). Palaeogeography, Palaeoclimatology, Palaeoecology, 457, 195-208. https://doi.org/10.1016/j.palaeo.2016.06.008.
[32] Jacques F.M.B., Guo, S.X., Su, T., Xing, Y.W., Huang, Y.J., Liu, Y.S., Ferguson, D.K., Zhou, Z.K., 2011. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3-4), 318-327. https://doi.org/10.1016/j.palaeo.2010.04.014.
[33] Jacques F.M.B., Su, T., Spicer, R.A., Xing, Y.W., Huang, Y.J., Zhou, Z.K., 2014. Late Miocene southwestern Chinese floristic diversity shaped by the southeastern uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 411, 208-215. https://doi.org/10.1016/j.palaeo.2014.05.041.
[34] Kaiser K., Opgenoorth L., Schoch W.H., Miehe G.,2009. Charcoal and fossil wood from palaeosols, sediments and artificial structures indicating late Holocene woodland decline in southern Tibet (China). Quaternary Science Reviews, 28(15), 1539-1554. https://doi.org/10.1016/j.quascirev.2009.02.016.
[35] Korasidis V.A., Wallace M.W., Wagstaff B.E., Hill R.S.,2019. Evidence of fire in Australian Cenozoic rainforests. Palaeogeography, Palaeoclimatology, Palaeoecology, 516, 35-43. https://doi.org/10.1016/j.palaeo.2018.11.023.
[36] Kou X.Y., Ferguson D.K., Xu J.X., Wang Y.F., Li C.S., 2006. The reconstruction of paleovegetation and paleoclimate in the late Pliocene of West Yunnan, China. Climatic Change, 77(3), 431-448. https://doi.org/10.1007/s10584-005-9039-5.
[37] Kunzmann L., Li S.F., Huang J., Utescher T., Su T., Zhou Z.K.,2022. Assessment of phytogeographic reference regions for Cenozoic vegetation: A case study on the Miocene flora of Wiesa (Germany). Fossil Imprint, 78(1), 1-43. https://doi.org/10.37520/fi.2022.002.
[38] Li N., Sun B.N., Wu J.Y.,De Fei Yan, Xiao, L., Dai, J., 2009. Cuticular structure of Quercus presenescens from the Pliocene in Baoshan, Yunnan, and its palaeoclimatic implications. Acta Palaeontologica Sinica, 48(4), 654-661. https://doi.org/10.3969/j.issn.0001-6616.2009.04.006 (in Chinese with English abstract).
[39] Li S.F., Hughes A.C., Su T., Anberrée J.L., Oskolski A.A., Sun M., Ferguson D.K., Zhou Z.K.,2017. Fire dynamics under monsoonal climate in Yunnan, SW China: Past, present and future. Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 168-176. https://doi.org/10.1016/j.palaeo.2016.10.028.
[40] Li S.H., Ji X.P., Harrison T., Deng C.L., Wang S.Q., Wang L.R., Zhu R.X.,2020. Uplift of the Hengduan Mountains on the southeastern margin of the Tibetan Plateau in the late Miocene and its paleoenvironmental impact on hominoid diversity. Palaeogeography, Palaeoclimatology, Palaeoecology, 553, 109794. https://doi.org/10.1016/j.palaeo.2020.109794.
[41] Li X.W., Li J., 1992. On the validity of Tanaka Line and its significance viewed from the distribution of Eastern Asiatic genera in Yunnan.Acta Botanica Yunnanica, 14(1), 1-12 (in Chinese with English abstract).
[42] Liu B.J., Spiekermann R., Zhao C.L., Püttmann W., Sun Y.Z., Jasper A., Uhl D.,2022. Evidence for the repeated occurrence of wildfires in an upper Pliocene lignite deposit from Yunnan, SW China. International Journal of Coal Geology, 250, 103924. https://doi.org/10.1016/j.coal.2021.103924.
[43] Liu L.H., Yu Y.D., Zhang J.H., 1984. The division of vertical vegetation zone in Hengduanshan.Acta Botanica Yunnanica, 6(2), 205-216 (in Chinese with English abstract).
[44] Liu L.H., Yu Y.D., Zhang J.H., 1985. Discussion upon the regularities of vegetational distribution in the Hengduan Mountains.Acta Botanica Yunnanica, 7(3), 323-335 (in Chinese with English abstract).
[45] Lu H.Y., Guo Z.T., 2014. Evolution of the monsoon and dry climate in East Asia during Late Cenozoic: A review. Science China Earth Sciences, 57(1), 70-79. https://doi.org/10.1007/s11430-013-4790-3.
[46] Lynch J.A., Clark J.S., Stocks B.J., 2004. Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: Interpreting fire regimes from charcoal records in boreal forests. Canadian Journal of Forest Research, 34(8), 1642-1656. https://doi.org/10.1139/x04-071.
[47] Martinetto E.,2015. Monographing the Pliocene and early Pleistocene carpofloras of Italy: Methodological challenges and current progress. Palaeontographica Abteilung B, 293, 57-99. https://doi.org/10.1127/palb/293/2015/57.
[48] Martinetto E., Monegato G., Vassio E., 2012. An early Pleistocene plant assemblage with East European affinity in the Venetian-Friulian Basin (NE Italy).Alpine and Mediterranean Quaternary, 25, 91-104.
[49] Molinari C., Carcaillet C., Bradshaw R.H.W., Hannon, G.E., Lehsten, V., 2020. Fire-vegetation interactions during the last 11,000 years in boreal and cold temperate forests of Fennoscandia. Quaternary Science Reviews, 241, 106408. https://doi.org/10.1016/j.quascirev.2020.106408.
[50] Momohara A., Ueki T., Saito T.,2017. Vegetation and climate histories between MIS 63 and 53 in the early Pleistocene in central Japan based on plant macrofossil evidences. Quaternary International, 455, 149-165. https://doi.org/10.1016/j.quaint.2017.03.038.
[51] Momohara A., Zhou Z.K., Li X.X., Setoguchi H., 2006. Cenozoic flora withQuercus sect. Heterobalanus in the western Yunnan Province, southwestern China. Japanese Journal of Historical Botany, 14(2), 43-44 (in Japanese).
[52] Morales-Molino,C., Colombaroli, D., Tinner, W., Perea, R., Valbuena-Carabaña, M., Carrión, J.S., Gil, L., 2018. Vegetation and fire dynamics during the last 4000years in the Cabañeros National Park (central Spain). Review of Palaeobotany and Palynology, 253, 110-122. https://doi.org/10.1016/j.revpalbo.2018.04.001.
[53] Nakashizuka T., Iida S., 1995. Composition, dynamics and disturbance regime of temperate deciduous forests in Monsoon Asia. Vegetatio, 121(1-2), 23-30. https://doi.org/10.1007/BF00044669.
[54] Nakayama S., Inokuchi M., Minamitani T., 2000. Seeds of Wild Plants in Japan. Tohoku University Press, Sendai, pp. 1-678 (in Japanese).
[55] Nikitin V.P.,2006. Palaeocarpology and Stratigraphy of Paleogene and Neogene Strata in Asian Russia. Akademicheskoe Izdatel’stvo “Geo”, Novosibirsk, pp. 1-229 (in Russian).
[56] Ohlson M., Tryterud E., 2000. Interpretation of the charcoal record in forest soils: Forest fires and their production and deposition of macroscopic charcoal. The Holocene, 10(4), 519-525. https://doi.org/10.1191/095968300667442551.
[57] Pu Z.W., Yang Z.Y., Tong Y.B., Zhao Y., Wang H.,2018. Paleomagnetic study of Pliocene lacustrine strata in the Baoshan Basin at the southeastern edge of the Tibetan Plateau. Geological Bulletin of China, 37(5), 759-775. https://doi.org/10.3969/j.issn.1671-2552.2018.05.002 (in Chinese with English abstract).
[58] Robson B.E., Collinson M.E., Riegel W., Wilde V., Scott A.C., Pancost R.D.,2015. Early Paleogene wildfires in peat-forming environments at Schöningen, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 53-62. https://doi.org/10.1016/j.palaeo.2015.07.016.
[59] Scott A.C.,2000. The pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 281-329. https://doi.org/10.1016/S0031-0182(00)00192-9.
[60] Scott A.C.,2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1), 11-39. https://doi.org/10.1016/j.palaeo.2009.12.012.
[61] Shao L.Y., Wang H., Yu X.H., Lu J., Zhang M.Q., 2012. Paleo-fires and atmospheric oxygen levels in the latest Permian: Evidence from maceral compositions of coals in eastern Yunnan, southern China. Acta Geologica Sinica (English Edition), 86(4), 949-962. https://doi.org/10.1111/j.1755-6724.2012.00719.x.
[62] Spicer R.A.,2017. Tibet, the Himalaya, Asian monsoons and biodiversity - In what ways are they related? Plant Diversity, 39(5), 233-244. https://doi.org/10.1016/j.pld.2017.09.001.
[63] Su, T., Jacques, F.M.B., Spicer, R.A., Liu, Y.S., Huang, Y.J., Xing, Y.W., Zhou, Z.K., 2013. Post-Pliocene establishment of the present monsoonal climate in SW China: Evidence from the late Pliocene Longmen megaflora. Climate of the Past, 9(4), 1911-1920. https://doi.org/10.5194/cp-9-1911-2013.
[64] Sun B.N., Wu J.Y., Liu Y.S.C., Ding, S.T., Li, X.C., Xie, S.P., Yan, D.F., Lin, Z.C., 2011. Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3-4), 328-336. https://doi.org/10.1016/j.palaeo.2010.09.023.
[65] Tharakan P.J., Robison D.J., Abrahamson L.P., Nowak C.A., 2001. Multivariate approach for integrated evaluation of clonal biomass production potential. Biomass and Bioenergy, 21(4), 237-247. https://doi.org/10.1016/S0961-9534(01)00038-1.
[66] The Angiosperm Phylogeny Group, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1-20. https://doi.org/10.1111/boj.12385.
[67] Tinner W., Hubschmid P., Wehrli M., Ammann B., Conedera M., 1999. Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology, 87(2), 273-289. https://doi.org/10.1046/j.1365-2745.1999.00346.x.
[68] Uhl D., Kerp H., 2003. Wildfires in the Late Palaeozoic of Central Europe - The Zechstein (Upper Permian) of NW-Hesse (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 199(1), 1-15. https://doi.org/10.1016/S0031-0182(03)00482-6.
[69] Vachula R.S., Russell J.M., Huang Y., Richter N.,2018. Assessing the spatial fidelity of sedimentary charcoal size fractions as fire history proxies with a high-resolution sediment record and historical data. Palaeogeography, Palaeoclimatology, Palaeoecology, 508, 166-175. https://doi.org/10.1016/j.palaeo.2018.07.032.
[70] Volk T.A., Verwijst T., Tharakan P.J., Abrahamson L.P., White E.H., 2004. Growing fuel: A sustainability assessment of willow biomass crops. Frontiers in Ecology and the Environment, 2(8), 411-418. https://doi.org/10.1890/1540-9295(2004)002[0411:GFASAO]2.0.CO;2.
[71] Wang S., Shao L.Y., Yan Z.M., Shi M.J., Zhang Y.H., 2019. Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China. Journal of Palaeogeography, 8(3), 238-250. https://doi.org/10.1186/s42501-019-0035-5.
[72] Wu F.L., Gao S.J., Tang F.J., Meng Q.Q., An C.R.,2019. A late Miocene-early Pleistocene palynological record and its climatic and tectonic implications for the Yunnan Plateau, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 530, 190-199. https://doi.org/10.1016/j.palaeo.2019.05.037.
[73] Wu M.X., Huang J., Spicer R.A., Li S.F., Zhao J.G., Deng W.Y.D., Ding, W.N., Tang, H., Xing, Y.W., Tian, Y.M., Zhou, Z.K., Su, T., 2022. The early Oligocene establishment of modern topography and plant diversity on the southeastern margin of the Tibetan Plateau. Global and Planetary Change, 214, 103856. https://doi.org/10.1016/j.gloplacha.2022.103856.
[74] Wu Z.W., He H.S., Keane R.E., Zhu Z.L., Wang Y.Q., Shan Y.L., 2020. Current and future patterns of forest fire occurrence in China. International Journal of Wildland Fire, 29(2), 104-119. https://doi.org/10.1071/WF19039.
[75] Xiao L., Sun B.N., Yan D.F., Xie S.P., Wei L.J.,2006. Cuticular structure of Quercus pannosa Hand.-Mazz. from the Pliocene in Baoshan, Yunnan Province and its palaeoenvironmental significance. Acta Micropalaeontologica Sinica, 23(1), 23-30. https://doi.org/10.3969/j.issn.1000-0674.2006.01.004 (in Chinese with English abstract).
[76] Xiao X.Y., Haberle S.G., Shen J., Xue B., Burrows M., Wang S.M.,2017. Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China. Climate of the Past, 13(6), 613-627. https://doi.org/10.5194/cp-13-613-2017.
[77] Xing Y.W., Utescher T., Jacques F.M.B., Su, T., Liu, Y.S., Huang, Y.J., Zhou, Z.K., 2012. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene: Evidence from plant macrofossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 358-360, 19-26. https://doi.org/10.1016/j.palaeo.2012.07.011.
[78] Xu J.X., Blackmore S., Wang Y.F., Li C.S., 2004. Late Pliocene vegetation and climate of Yangyi region, Yunnan of China, based on palynological data. Palaeontographica Abteilung B, 269, 131-148. https://doi.org/10.1127/palb/269/2004/131.
[79] Xu J.X., Ferguson D.K., Li C.S., Wang Y.F.,2008. Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China. Review of Palaeobotany and Palynology, 148(1), 36-59. https://doi.org/10.1016/j.revpalbo.2007.08.004.
[80] Xu J.X., Wang Y.F., Du N.Q.,2003. Late Pliocene vegetation and palaeoclimate of Yangyi and Longling of western Yunnan Province. Journal of Palaeogeography (Chinese Edition), 5(2), 217-223. https://doi.org/10.3969/j.issn.1671-1505.2003.02.010 (in Chinese with English abstract).
[81] Yang Q.E., Hong D.Y., Malécot V., Boufford D.E., 2011. Adoxaceae. In: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China, vol. 19. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp. 570-614.
[82] Yin L.P., Yan Y.S., 1996. Identification of Weed Seeds with Colored Photos. China Agricultural Science and Technology Press, Beijing, pp. 1-355 (in Chinese).
[83] Yunnan Bureau of Geology and Mineral Resources (YBGMR), 1990. Regional Geology of Yunnan Province. Geological Publishing House, Beijing, pp. 1-728 (in Chinese with English summary).
[84] Zachos J., Pagani M., Sloan L., Thomas E., Billups K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686-693. https://doi.org/10.1126/science.1059412.
[85] Zhang E.L., Sun W.W., Zhao C., Wang Y.B., Xue B., Shen J.,2015. Linkages between climate, fire and vegetation in southwest China during the last 18.5 ka based on a sedimentary record of black carbon and its isotopic composition. Palaeogeography, Palaeoclimatology, Palaeoecology, 435, 86-94. https://doi.org/10.1016/j.palaeo.2015.06.004.
[86] Zhang Q.Q., Ferguson D.K., Mosbrugger V., Wang Y.F., Li C.S.,2012. Vegetation and climatic changes of SW China in response to the uplift of Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 363-364, 23-36. https://doi.org/10.1016/j.palaeo.2012.08.009.
[87] Zhang Z.H., Lü D.W., Wang T.T., An D.Z., Liu H.Y., Wang D.D., Wang C.S.,2022. Intensive peatland wildfires during the Aptian-Albian oceanic anoxic event 1b: Evidence from borehole SK-2 in the Songliao Basin, NE China. Journal of Palaeogeography, 11(3), 448-467. https://doi.org/10.1016/j.jop.2022.06.002.
[88] Zhao W.W., Zhao Y., Qin F.,2017. Holocene fire, vegetation, and climate dynamics inferred from charcoal and pollen record in the eastern Tibetan Plateau. Journal of Asian Earth Sciences, 147, 9-16. https://doi.org/10.1016/j.jseaes.2017.07.017. |