[1] Ahmad F.1971. Geology of the Vindhyan System in the eastern part of the Son Valley in Mirzapur District, Uttar Pradesh.Records of Geological Survey of India, 96, 1-41.
[2] Alfaro P., Moretti M., Soria J.M., 1997. Soft-sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix-Baza Basin, Central Betic Cordillera).Swiss Journal of Geosciences, 90, 531-540.
[3] Alfaro P., Delgado J., Estévez A., Molina J.M., Moretti M., Soria J.M., 2002. Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain).International Journal of Earth Sciences (Geologische Rundschau), 91, 505-513.
[4] Alfaro P., Gibert L., Moretti M., García-Tortosa F.J., Sanz de Galdeano C., Galindo-Zaldívar J., Lόpez-Garrido Á.C., 2010. The significance of giant seismites in the Plio-Pleistocene Baza palaeo-lake (S Spain).Terra Nova, 22, 172-179.
[5] Allen J.R.L.,1977. The possible mechanics of convolute lamination in graded sand beds.Journal of the Geological Society, London, 134, 19-31.
[6] Allen, J.R.L., 1982. Sedimentary Structures: Their Character and Physical Basis. Developments in Sedimentology 30. Elsevier, Amsterdam, vol. I, pp. 1-593.
[7] Allen J.R.L.,1984. Sedimentary Structures: Their Character and Physical Basis. Developments in Sedimentology 30. Elsevier, Amsterdam, vol II, pp. 1-663.
[8] Alsop G.I., Marco S., 2013. Seismogenic slump folds formed by gravity-driven tectonics down a negligible subaqueous slope.Tectonophysics, 605, 48-69.
[9] Anbarasu K.,2001. Facies variation and depositional environment of Mesoproterozoic Vindhyan sediments of Chitrakut area, central India.Journal of Geological Society of India, 58, 341-350.
[10] Anderton R.,1976. Tidal-shelf sedimentation: An example from the Scottish Dalradian.Sedimentology, 23, 429-458.
[11] Anketell J.M., Cegla J., Dzulynski S., 1970. On the deformational structures in systems with reversed density gradients.Journal of the Polish Geological Society, 40, 3-30.
[12] Basu A., Bickford M.E., 2015. An alternate perspective on the opening and closing of the intracratonic Purana basins in peninsular India.Journal of the Geological Society of India, 85, 5-25.
[13] Bengtson S., Belivanova V., Rasmussen B., Whitehouse M., 2009. The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older.Proceedings of the National Academy of Sciences, 106, 7729-7734.
[14] Bhattacharya H.N., Bandyopadhaya S., 1998. Seismites in a Proterozoic tidal succession, Singbhum, Bihar, India.Sedimentary Geology, 119, 239-252.
[15] Bose P.K., Banerjee S., Sarkar S., 1997. Slope-controlled seismic deformation and tectonic framework of deposition: Koldaha shale, India.Tectonophysics, 269, 151-169.
[16] Bose P.K., Sarkar S., Chakraborty S., Banerjee S., 2001. Overview of the Meso- to Neoproterozoic evolution of the Vindhyan basin, central India.Sedimentary Geology, 141, 395-419.
[17] Bose P.K., Sarkar S., Das N.G., Banerjee S., Mandal A., Chakraborty N., 2015. Proterozoic Vindhyan Basin: Configuration and evolution. In: Mazumder, R., Eriksson, P.G., (Eds.). Precambrian Basins of India: Stratigraphic and Tectonic Context. Geological Society, London, Memoirs, 43, pp. 85-102.
[18] Brodzikowski K., van Loon A.J., 1980. Sedimentary deformations in Saalian glaciolimnic deposits near Wlostow (Zary area, western Poland).Geologie en Mijnbouw, 59, 251-272.
[19] Calvo J.P., Rodríguez-Pascua M., Martin-Velazquez S., Jimenez S., De Vicente G., 1998. Microdeformation of lacustrine laminite sequences from Late Miocene formations of SE Spain: An interpretation of loop bedding.Sedimentology, 45, 279-292.
[20] Chakrabarti R., Basu A., Chakrabarti A., 2007. Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India.Precambrian Research, 159, 260-274.
[21] Chakraborty C.,2006. Proterozoic intracontinental basin: The Vindhyan example.Journal of Earth System Science, 115, 3-22.
[22] Chiarella D., Moretti M., Longhitano S.G., Muto F., 2016. Deformed cross-stratified deposits in the Early Pleistocene tidally-dominated Catanzaro strait-fill succession, Calabrian arc (southern Italy): Triggering mechanisms and environmental significance.Sedimentary Geology, 344, 277-289.
[23] Colleps C.L., McKenzie N.R., Sharma M., Liu H., Gibson T.M., Chen W., Stockli D.F., 2021. Zircon and apatite U-Pb age constraints from the Bundelkhand craton and Proterozoic strata of central India: Insights into craton stabilization and subsequent basin evolution.Precambrian Research, 362, 106286.
[24] Collinson J.D.,2003. Deformation of sediments. In: Middleton, G.V., (Ed.). Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Publishers, Dordrecht, pp. 190-193.
[25] Døe T.W., Dott R.H. Jr., 1980. Genetic significance of deformed cross bedding - With examples from the Navajo and Weber sandstones of Utah.Journal of Sedimentary Petrology, 50, 793-812.
[26] Finn W.D.L.,2001. State of the art for the evaluation of seismic liquefaction potential.Computers and Geotechnics, 29, 329-341.
[27] García-Tortosa F.J., Alfaro P., Gilbert L., Scott G., 2011. Seismically induced slump on an extremely gentle slope (< 1) of the Pleistocene Tecopa paleolake (California).Geology, 39, 1055-1058.
[28] Gardner R.L., Piazolo S., Daczko N.R.2016. Shape of pinch and swell structures as a viscosity indicator: Application to lower crustal polyphase rocks.Journal of Structural Geology, 88, 32-45.
[29] Gladkov A.S., Lobova E.U., Deev E.V., Korzhenkov A.M., Mazeika J.V., Abdieva S.V., Rogozhin E.A., Rodkin M.V., Fortuna A.B., Charimov T.A., Yudakhin A.S., 2016. Earthquake-induced soft-sediment deformation structures in Late Pleistocene lacustrine deposits of Issyk-Kul Lake (Kyrgyzstan).Sedimentary Geology, 344, 112-122.
[30] Green R.A., Bommer J.J., 2019. What is the smallest earthquake magnitude that needs to be considered in assessing liquefaction hazard?Earthquake Spectra, 35, 1441-1464.
[31] Guallini L., Brozzetti F., Marinangeli L., 2012. Large-scale deformational systems in the south polar layered deposits (Promethei Lingula, Mars): "Soft-sediment" and deep-seated gravitational slope deformations mechanisms.Icarus, 220, 821-843.
[32] Gupta S., Jain K.C., Srivastava V.C., Mehrotra R.D., 2003. Depositional environment and tectonism during the sedimentation of the Semri and Kaimur Groups of rocks, Vindhyan Basin.Journal of the Palaeontological Society of India, 48, 181-190.
[33] Kumar A., Gopalan K., Rajagopalan G., 2001. Age of the Lower Vindhyan sediments, Central India.Current Science, 81, 806-809.
[34] Kumar S., Sharma M., 2012. Vindhyan Basin, Son Valley Area, Central India. Field Guide Book, Palaeontological Society of India, pp. 1-145.
[35] Lowe D.R.,1975. Water escape structures in coarse-grained sediments.Sedimentology, 22, 157-204.
[36] Maltman A., Bolton A., 2003. How sediments become mobilized. In: Van Rensbergen, P., Hillis, R.R., Maltman, A.J., Morley, C.K., (Eds.). Subsurface Sediment Mobilization. Geological Society, London, Special Publication, 216, pp. 9-20.
[37] Mazumder R., van Loon A.J., Arima M., 2006. Soft-sediment deformation structures in the Earth's oldest seismites.Sedimentary Geology, 186, 19-26.
[38] Mazumder R., Altermann W., 2007. Discussion on new aspects of deformed cross-strata in fluvial sandstones: Examples from Neoproterozoic formations in northern Norway by S.L. Røe and M. Hermansen.Sedimentary Geology, 198, 351-353.
[39] Mazumder R., Rodríguez-López J.P., Arima M., van Loon A.J., 2009. Palaeoproterozoic seismites (fine-grained facies of the Chaibasa Formation, east India) and their soft sediment deformation structures.Geological Society of London, Special Publications, 323, 301-318.
[40] McKee E.D., Reynolds M.A., Baker C.H., 1962. Experiments on intraformational recumbent folds in cross-bedded sand. U.S.G.S. Professional Paper, 450-D, pp. 155-160.
[41] Metz J.M.,2010. A study of the record of ancient sedimentary rocks on Mars using MER, HIRISE and CRISM images. Ph.D. Thesis, California Institute of Technology, Pasadena, California, pp. 1-250.
[42] Mills P.C.,1983. Genesis and diagnostic value of soft-sediment deformation structures - A review.Sedimentary Geology, 35, 83-104.
[43] Moretti M., Pieri P., Tropeano M., Walsh N., 1995. Tyrrhenian seismites in Bari area (Murge-Apulian foreland).Atti Dei Convegni Lincei, Accademia Nazionale Dei Lincei, 122, 211-216.
[44] Moretti M., Alfaro P., Caselles O., Canas J.A., 1999. Modelling seismites with a digital shaking table.Tectonophysics, 304, 369-383.
[45] Moretti M.,2000. Soft-sediment deformation structures interpreted as seismites in Middle-Late Pleistocene aeolian deposits (Apulian foreland, southern Italy).Sedimentary Geology, 135, 167-179.
[46] Moretti M., Sabato L., 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant’Arcangelo Basin (Southern Italy): Seismic shock vs. overloading.Sedimentary Geology, 196, 31-45.
[47] Moretti M., van Loon A.J., 2014. Restrictions to the application of ‘diagnostic’ criteria for recognizing ancient seismites.Journal of Palaeogeography, 3(4), 162-173.
[48] Moretti M., Alfaro P., Owen G., 2016. The environmental significance of soft-sediment deformation structures: Key signatures for sedimentary and tectonic processes.Sedimentary Geology, 344, 1-4.
[49] Neuwerth R., Suter F., Guzman C.A., Gorin G.E., 2006. Soft-sediment deformation in a tectonically active area: The Plio-Pleistocene Zarzal Formation in the Cauca valley (Western Colombia).Sedimentary Geology, 186, 67-88.
[50] Novak A., Egenhoff S., 2019. Soft-sediment deformation structures as a tool to recognize synsedimentary tectonic activity in the middle member of the Bakken Formation, Williaton Basin, North Dakota.Marine and Petroleum Geology, 105, 124-140.
[51] Obermeier S.F.,1996. Use of liquefaction-induced features for paleoseismic analysis - An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleoearthquakes.Engineering Geology, 44, 1-76.
[52] Obermeier S.F., Pond E.C., Olson S.M., Green R.A., 2002. Paleoliquefaction studies in continental settings. In: Ettensohn, F.R., Rast, N., Brett, C.E., (Eds.). Ancient Seismites. Geological Society of America, Special Paper, 359, pp. 13-27.
[53] Oliveira C.M.M., Hodgson D.M., Flint S.S., 2011. Distribution of soft-sediment deformation structures in clinoform successions of the Permian Ecca Group, Karoo Basin, South Africa.Sedimentary Geology, 235, 314-330.
[54] Owen G.,1987. Deformation processes in unconsolidated sands. In: Jones, M.E., Preston, R.F.M., (Eds.). Deformation Mechanisms in Sediments and Sedimentary Rocks. Geological Society of London, Special Publication, 29, pp. 11-24.
[55] Owen G.,1995. Soft sediments deformation in Upper Proterozoic Torridonian sandstones (Applecross Formation) at Torridonian, northwest Scotland.Journal of Sedimentary Research, 65, 495-504.
[56] Owen G.,1996. Experimental soft-sediment deformation: Structures formed by the liquefaction of unconsolidated sands and some ancient examples.Sedimentology, 43, 279-293.
[57] Owen G.,2003. Load structures: Gravity-driven sediment mobilization in the shallow subsurface. In: Van Rensbergen, P., Hillis, R.R., Maltman, A.J., Morley, C.K., (Eds.). Subsurface Sediment Mobilization. Geological Society of London, Special Publication, 216, pp. 21-34.
[58] Owen G., Moretti M., 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands.Sedimentary Geology, 235, 141-147.
[59] Owen G., Moretti M., Alfaro P., 2011. Recognizing triggers for soft-sediment deformation: Current understanding and future directions.Sedimentary Geology, 235, 133-342.
[60] Ozcelik M.,2016. Evaluation of soft sediment deformation structures along the Fethiye-Burdur Fault Zone, SW Turkey.Journal of Earth System Science, 125, 343-358.
[61] Pati J.K., Reimold W.U., Koeberl C., Pati P., 2008. The Dhala structure, Bundelkhand Craton, Central India - Eroded remnant of a large Paleoproterozoic impact structure.Meteoritics and Planetary Science, 43, 1383-1398.
[62] Plaziat J.C., Purser B.H., Philobbos E., 1990. Seismic deformation structures (seismites) in the syn-rift sediments of the NW Red Sea (Egypt).Bulletin de la Société Géologique de France, 6, 419-434.
[63] Rana N., Prakash Sati S., Sundriyal Y., Juyal N., 2016. Genesis and implication of soft sediment deformation structures in high-energy fluvial deposits of the Alaknanda valley, Garhwal Himalaya, India. Sedimentary Geology, 344, 263-276.
[64] Ray J.S., Veizer J., Davis W.J., 2003. C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: Age, diagenesis, correlations and implications for global events.Precambrian Research, 121, 103-140.
[65] Ray J.S.,2006. Age of the Vindhyan Supergroup: A review of recent findings.Journal of Earth System Science, 115, 149-160.
[66] Rodríguez-Pascua M.A., Calvo J.P., De Vicente G., Gomez-Gras D., 2000. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene.Sedimentary Geology, 135, 117-135.
[67] Rossetti D.F.,1999. Soft-sediment deformation structures in late Albian to Cenomanian deposits, Sao Luis Basin, northern Brazil: evidence for palaeoseismicity.Sedimentology, 46, 1065-1081.
[68] Rossetti D.F., Alves F.C., Valeriano M.M., 2017. A tectonically-triggered late Holocene seismite in the southern Amazonian lowlands, Brazil.Sedimentary Geology, 358, 70-83.
[69] Sarangi S., Gopalan K., Kumar S., 2004. Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: Implications for Precambrian atmospheric oxygen evolution.Precambrian Research, 132, 107-121.
[70] Sarkar S., Banerjee S., Chakrabarty S., 1995. Syn-sedimentary seismic signatures in the Mesoproterozoic Koldhaha shale, Kheinjua Formation, Central India.Indian Journal of Earth Sciences, 22, 158-164.
[71] Sarkar S., Choudhuri A., Banerjee S., van Loon A.J., Bose P.K., 2014. Seismic and non-seismic soft-sediment deformation structures in the Proterozoic Bhander limestone, central India.Geologos, 20, 89-103.
[72] Seilacher A.,1969. Fault-graded beds interpreted as seismites.Sedimentology, 13, 155-159.
[73] Shanmugam G.,2016. The seismite problem.Journal of Palaeogeography, 5, 318-362.
[74] Shanmugam G.,2017. Global case studies of soft-sediment deformation structures (SSDS): Definations, classifications, advances, origins, and problems.Journal of Palaeogeography, 6, 251-320.
[75] Sims J.D.,1973. Earthquake-induced structures in sediments of Van Norman Lake San Fernando, California.Science, 182, 161-163.
[76] Sims J.D.,1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments.Tectonophysics, 29, 141-152.
[77] Singh A.K., Pati J.K., Sinha R., Reimold W.U., Prakash K., Nadeem M., Dwivedi S., Mishra D., Dwivedi A.K., 2021. Characteristic landforms and geomorphic features associated with impact structures: Observations at the Dhala structure, north-central India.Earth Surface Processes and Landforms, 46, 1482-1503.
[78] Singh B.P., Mondal K., Singh A., Mittal P., Singh R.K., Kanhaiya S., 2020. Seismic origin of the soft-sediment deformation structures in the Upper Paleo-Mesoproterozoic Semri Group, Vindhyan Supergroup, Central India.Geological Journal, 55, 7474-7488.
[79] Singh S., Jain A.K., 2007. Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya: Geological evidences of paleoseismicity along active fault zone.Sedimentary Geology, 196, 47-57.
[80] Topal S., Özkul M., 2014. Soft-Sediment deformation structures interpreted as seismites in the Kolankaya Formation, Denizli Basin (SW Turkey).The Scientific World Journal, 13, 352654.
[81] van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: An overview.Geologos, 15, 3-55.
[82] van Loon A.J., Maulik P., 2011. Abraded sand volcanoes as a tool for recognizing paleoearthquakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India).Sedimentary Geology, 238, 145-155.
[83] van Loon A.J., Pisarska-Jamroży M., Woronko B., 2020. Sedimentological distinction in glacigenic sediments between load casts induced by periglacial processes from those induced by seismic shocks.Geological Quarterly, 64, 626-640.
[84] Wang C.Y., Wong A., Dreger D.S., Manga M.2006. Liquefaction limit during earthquakes and underground explosions: Implications on ground-motion attenuation.Bulletin of the Seismological Society of America, 96, 355-363.
[85] Woźniak P.P., Belzyt S., Pisarska-Jamroży M., Woronko B., Lamsters K., Nartišs M., Bitinas A., 2021. Liquefaction and re-liquefaction of sediments induced by uneven loading and glacigenic earthquakes: Implications of results from the Latvian Baltic Sea coast.Sedimentary Geology, 421, 105944.
[86] Zhang C., Wu Z., Gao L., Wang W., Tian Y., Ma C., 2007. Earthquake-induced soft sediment deformation structures in the Mesoproterozoic Wumishan Formation, North China and their geologic implications.Science in China Series D: Earth Sciences, 50, 350-358. |