Abstract A full global geodynamical model over 600 million years (Ma) has been developed at the University of Lausanne during the past 20 years. We show herein how the 2D maps were converted into 3D (i.e., full hypsometry and bathymetry), using a heuristic-based approach. Although the synthetic topography may be viewed as relatively crude, it has the advantage of being applicable anywhere on the globe and at any geological time. The model allows estimating the sea-level changes throughout the Phanerozoic, with the possibility, for the first time, to flood accordingly continental areas. One of the most striking results is the good correlation with ��measured�� sea-level changes, implying that long-term variations are predominantly tectonically-driven. Volumes of mountain relief are also estimated through time and compared with strontium isotopic ratio (Sr-ratio), commonly thought to reflect mountain belt erosion. The tectonic impact upon the general Sr-ratio trend is shown herein for the first time, although such influence was long been inferred.|
Fund:We gratefully thank all members of the Prof. Stampfli��s working group for sharing their data, ideas and time with us. The Swiss National Fund (SNF) and SHELL equally acknowledged for funding the present work. We are very grateful to Prof. Zeng-Zhao Feng, Dr. Xiu-Mian Hu, Prof. Huw Davies, and Dr. Stephen Johnston for their useful and constructive comments. The geodynamical model is now the property of NEFTEX Petroleum Consultants Ltd. We gratefully acknowledge permission from NEFTEX Petroleum Consultant Ltd. to publish these derived results.
Christian V��rard*,Cyril Hochard,Peter O. Baumgartner et al. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations[J]. , 2015, 4(1): 64-84.
Christian V��rard*,Cyril Hochard,Peter O. Baumgartner et al. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations[J]. Journal of Palaeogeography, 2015, 4(1): 64-84.
Amante, C., Eakins, B., 2009. ETOPO1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum Nesdis NGDC-24, Boulder, Colorado, 25 pages;http://ngdc.noaa.gov/mgg/global/global.html.
Anderson, D., 2001. Top-down tectonics? Science, 293: 2016-2018.
Baes, M., Govers, R., Wortel, R., 2011. Switching between alternative responses of the lithosphere to continental collision. Geophysical Journal International, 187: 1151-1174.
Bagheri, S., Stampfli, G., 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications. Tectonophysics, 451: 123-155.
Berner, R., 1994. Geo CARB. II: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 294: 56-91.
Berner, R., 1998. The carbon cycle and carbon dioxide over the Phanerozoic time: The role of land plants. Philosophical Transactions of the Royal Society London B, 353: 75-82.
Burke, W., Denison, R., Hetherington, E., K?pnik, R., Nelson, H., Otto, J., 1982. Variations in seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 109: 516-519.
Carter, R., 1998. Two models: Global sea-level change and sequence stratigraphic architecture. Sedimentary Geology, 122: 23-36.
Cloetingh, S., Wortel, R., Vlaar, N., 1982. Evolution of passive continental margins and initiation of subduction zones. Nature, 297: 139-142.
Cloetingh, S., Wortel, R., Vlaar, N., 1984. Passive margin evolution, initiation of subduction and the Wilson cycle. Tectonophysics, 109: 147-163.
Cogn��, J. -P., Humler, E., Courtillot, V., 2006. Mean age of oceanic lithosphere drives eustatic sea-level change since Pangea breakup. Earth and Planetary Science Letters, 245: 115-122.
Doglioni, C., Carminati, E., Cuffaro, M., Scrocca, D., 2007. Subduction kinematics and dynamic constraints. Earth-Science Reviews, 83: 125-175.
Engebretson, D., Kelley, K., Cashman, H., Richards, M., 1992. 180 million years of subduction. GSA Today, 2: 93-95.
EXXON Petroleum Company, 1988. The EXXON ��global�� sea-level curve; unpublished.
Ferrari, O., Hochard, C., Stampfli, G., 2008. An alternative plate tectonic constrained model for the Paleozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia, with special attention to Northern Thailand. Tectonophysics, 451: 346-365.
Fl?gel, S., Wold, C., Hay, W., 2000. Evolution of sediments and ocean salinity. Abstracts volume, 31st International Geological Congress, Rio de Janeiro, Brazil, August 6-17, 2000, 4 pages.
Flores-Reyes, K., 2009. Mesozoic oceanic terranes of southern Central America �� Geology, geochmistry and geodynamics. Ph.D. thesis, Universit�� de Lausanne, Lausanne, 329 pages.
Forsyth, D., Uyeda, S., 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal of the Royal Astronomical Society, 43: 163-200.
Fran?ois, L., Walker, J., 1992. Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/86Sr isotopic ratio of seawater. American Journal of Science, 292: 81-135.
Hafkenscheid, E., Wortel, R., Spakman, W., 2006. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. Journal of Geophysical Research, 111: B08401.
Hallam, A., 1984. Pre-Quaternary sea-level changes. Annual Review of Earth and Planetary Sciences, 12: 205-243.
Hallam, A., Cohen, J., 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates [and discussion]. Philosophical Transactions of the Royal Society B (Biological sciences), London, 325: 437-455.
Haq, B., Hardenbol, J., Vail, P., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156-1167.
Haq, B., Schutter, S., 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64-68.
Hay, W., Migdisov, A., Balukhovsky, A., Wold, C., Fl?gel, S., S?ding, E., 2006. Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 3-46.
Hay, W., Wold, C., S?ding, E., Fl?gel, S., 2001. Evolution of sediment fluxes and ocean salinity. In: Merriam, D., Davies, J., (eds). Geologic Modelling and Simulation: Sedimentary Systems. The Netherlands, Dordrecht: Kluwer Academic/Plenum Publishers, 153-167.
Hochard, C., 2008. GIS and geodatabases application to global scale plate tectonics modelling. Ph.D. thesis, Universit�� de Lausanne, Lausanne, 164 pages.
Holland, H., 1973. Systematics of the isotopic composition of sulphur in the oceans during the Phanerozoic and its implications for atmospheric oxygen. Geochimica et Cosmochimica Acta, 37: 2605-2616.
Holland, H., 1984. The chemical evolution of the atmosphere and oceans. New Jersey, Princeton: Princeton University Press, 582 pages.
Kominz, M., 1984. Oceanic ridge volumes and sea level change �� An error analysis. In: Schlee, J., (ed). Interregional Unconformities and Hydrocarbon Accumulation. American Association of Petroleum Geological Memoirs, 36: 109-127.
Kominz, M., Browning, J., Miller, K., Sugarman, P., Mizintseva, S., Scotese, C., 2008. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Research, 20: 211-226.
Larson, R., 1991. Latest pulse of the Earth: Evidence for a mid-Cretaceous superplume. Geology, 19: 547-550.
2.3.CO;2 target="_blank">
McArthur, J., Howarth, R., Bailey, T., 2001. Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, 109: 155-170.
McKenzie, D., 1977. Initiation of trenches: A finite amplitude instability. In: Talwani, M., Pittman, W., (eds). Island arcs, deep-sea trenches, and back-arc basins. American Geophysical Union, 1: 57-62.
Miller, K., Kominz, M., Browning, J., Wright, J., Mountain, G., Katz, M., Sugarman, P., Cramer, B., Christie-black, N., Pekar, S., 2005. The Phanerozoic record of global sea-level change. Science, 310: 1293-1298.
Moix, P., Beccaletto, L., Kozur, H., Hochard, C., Rosselet, F., Stampfli, G., 2008. A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. In: Sorkhabi, R., Heydari, E., (eds). Asia out of the Tethys: Geochronologic, Tectonic and Sedimentary Records. Tectonophysics, 451: 7-39.
Mueller, S., Phillips, R., 1991. On the initiation of subduction. Journal of Geophysical Research, 96: 651-665.
M��hlenbachs, K., 1998. The oxygen isotopic composition of the oceans, sediments and the seafloor. Chemical Geology, 145: 263-273.
M��ller, D., Sdrolias, M., Gaina, C., Steinberger, B., Heine, C., 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319: 1357-1362.
Parsons, B., Sclater, J., 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82: 803-827.
Pitman, W., 1978. Relationship between eustacy and stratigraphic sequences of passive margins. Geological Society of America Bulletin, 89: 1389-1403.
2.0.CO;2 target="_blank">
Posamentier, H., Vail, P., 1988. Eustatic controls on clastic deposition �� Sequence and systems tract models. In: Wilgus, C., Hastings, B., Kendall, C., Posamentier, H., Ross, C., Van Wagoner, J., (eds). Sea-Level Changes: An Integrated Approach. Society of Economic Paleontologists and Mineralogists (SEPM), Special Publication, 42: 125-154.
Prokoph, A., Shields, G., Veizer, J., 2008. Compilation and time-series analysis of marine carbonate ��18O, ��13C, 87Sr/86Sr and ��34S databases through Earth history. Earth-Science Reviews, 87: 113-134.
Richter, F., Rowley, D., De Paolo, D., 1992. Sr isotope evolution of seawater: The role of tectonics. Earth and Planetary Science Letters, 109: 11-23.
Ross, C., Ross, J., 1987. Late Palaeozoic sea levels and depositional sequences. In: Ross, C., Haman, D., (eds). Timing and depositional history of eustatic sequences: Constraints on seismic stratigraphy. Cushman Foundation for Foraminiferal Research, Special Publication, 24: 137-149.
Ross, C., Ross, J., 1988. Eustatic controls on clastic deposition II �� Sequence and systems tract models. In: Wilgus, C., Hastings, B., Kendall, C., Posamentier, H., Ross, C., Van Wagoner, J., (eds). Sea-Level Changes: An Integrated Approach. Society of Economic Paleontologists and Mineralogists, Special Publication, 42: 71-108.
Schellart, W., Freeman, J., Stegman, D., Moresi, L., May, D., 2007. Evolution and diversity of subduction zones controlled by slab width. Nature, 446: 308-311.
Scholer, M., Irving, J., Binley, A., Holliger, K., 2011. Estimating vadose zone hydraulic properties using ground penetrating radar: The impact of prior information. Water Resources Research, 47, W10512, 14 pages.
Stampfli, G., 1993. Le Brian?onnais, terrain exotique dans les Alpes? Eclogae Geologicae Helvetiae, 86: 1-45.
Stampfli, G., 2013. Response to the comments on ��The formation of Pangea�� by D. A. Ruban. Tectonophysics, 608: 1445-1447.
Stampfli, G., Borel, G., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196: 17-33.
Stampfli, G., Borel, G., 2004. The TRANSMED transects in space and time: Constraints on the paleotectonic evolution of the Mediterranean domain. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G., Ziegler, P., (eds). The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle. Berlin: Springer Verlag.
Stampfli, G., Borel, G., Cavazza, W., Mosar, J., Ziegler, P., 2001a. Palaeotectonic and palaeogeographic evolution of the western tethys and peritethyn domain (IGCP PROJECT 369). Episodes, 24: 222-227.
Stampfli, G., Borel, G., Marchant, R., Mosar, J., 2002a. Western Alps geological constraints on western Tethyan reconstructions. In: Rosenbaum, G., Lister, G. S., (eds). Reconstruction of the evolution of the Alpine-Himalayan Orogen. Journal of the Virtual Explorer, 7: 75-104.
Stampfli, G., Hochard, C., 2009. Plate tectonics of the Alpine realm. Geological Society, London, Special Publications, 327: 89-111.
Stampfli, G., Hochard, C., V��rard, C., Wilhem, C., von Raumer, J., 2013. The formation of Pangea. Tectonophysics, 593: 1-19.
Stampfli, G., Kozur, H., 2006. Europe from the Variscan to the Alpine cycles. Geological Society, London, Memoirs, 32: 57-82.
Stampfli, G., Marcoux, J., Baud, A., 1991. Tethyan margins in space and time. In: Channell, J. E. T., Winterer E. L., Jansa, L. F., (eds). Paleogeography and paleoceanography of Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 87: 373-410.
Stampfli, G., Mosar, J., Favre, P., Pillevuit, A., Vannay, J. -C., 2001b. Permo-Mesozoic evolution of the western Tethys realm: The Neo-Tethys East Mediterranean Basin connection. M��moires du Mus��um national d'histoire naturelle, 186: 51-108.
Stampfli, G., Mosar, J., Marquer, D., Marchant, R., Baudin, T., Borel, G., 1998. Subduction and obduction processes in the Swiss Alps. Tectonophysics, 296: 159-204.
Stampfli, G., Pillevuit, A., 1993. An alternative Permo-Triassic reconstruction of the kinematics of the Tethyan realm. In: Dercourt, J., Ricou, L. E., Vrielynck, B., (eds). Atlas Tethys Palaeoenvironmental Maps. Paris: Gauthier-Villars, 55-62.
Stampfli, G., Vavassis, I., De Bono, A., Rosselet, F., Matti, B., Bellini, M., 2003. Remnants of the Paleotethys oceanic suture-zone in the western Tethyan area. Bollettino della Societ�� Geologica Italiana e del Servizio Geologico d'Italia, Volume speciale, 2: 1-23.
Stampfli, G., von Raumer, J., Borel, G., 2002b. Paleozoic evolution of pre-Variscan terranes: From Gondwana to the Variscan collision. Geological Society of America, Special Papers, 364: 263-280.
Stampfli, G., von Raumer, J., Wilhem, C., 2011. The distribution of Gondwana-Derived Terranes in the early Paleozoic. In: Guti��rerrez-Marco, J. C., Rabano, I., Garcia-Bellido, D., (eds). Ordovician of the World. Instituto Geol��gico y Minero de Espa?a, Madrid, 14: 567-574.
Stein, S., Stein, C., 1992. A model for the global variation in oceanic depth and heat-flow with lithospheric age. Nature, 359: 123-129.
Stern, R., 2004. Subduction initiation: Spontaneous and induced. Earth and Planetary Science Letters, 226: 275-292.
Turcotte, D., Schubert, G., 2002. Geodynamics �� Second Edition. Cambridge: Cambridge University Press, 456 pages.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G., Diener, A., Ebneth, S., Godd��ris, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O., Strauss, H., 1999. 87Sr/86Sr, ��13C, ��18O evolution of Phanerozoic sea-water. Chemical Geology, 161: 59-88.
V��rard, C. Statistics of the Earth��s Topography, in preparation.
V��rard, C., Flores, K., Stampfli, G., 2012. Geodynamic reconstructions of the South America�CAntarctica plate system. Journal of Geodynamics, 53: 43-60.
V��rard, C., Hochard, C., Baumgartner, P., 2011. Geodynamic evolution of the Earth over 600 Ma: Palaeo-topography and -bathymetry (from 2D to 3D). Poster #PP-13D-1848 at the American Geophysical Union Fall Meeting (AGU), San Francisco, California, December 5-9, 2011.
V��rard, C., Stampfli, G., 2013a. Geodynamic reconstructions of the Australides �� 1: Palaeozoic. Geosciences, 3: 311-330.
V��rard, C., Stampfli, G., 2013b. Geodynamic reconstructions of the Australides �� 2: Mesozoic-Cainozoic. Geosciences, 3: 331-353.
von Raumer, J., Bussy, F., Schaltegger, U., Schaltegger, U., Schulz, B., Stampfli, G., 2013. Pre-Mesozoic Alpine basements �� their place in the European Paleozoic framework. The Geological Society of America Bulletin, 125: 89-108.
von Raumer, J., Bussy, F., Stampfli, G., 2009. The Variscan evolution in the External massifs of the Alps and place in their Variscan framework. Comptes Rendus Geoscience, 341: 239-252.
von Raumer, J., Stampfli, G., 2008. The birth of the Rheic Ocean �� Early Paleozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics, 461: 9-20.
von Raumer, J., Stampfli, G., Hochard, C., Gutierrez-Marco, C., 2006. The Early Palaeozoic in Iberia a plate-tectonic interpretation. Zeitschrift der Deutschen Gesellschaft f��r Geowissenschaften, 157: 575-584.