Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology
Xiu-Mian Hu1, *, Eduardo Garzanti2, Wei An1
1. State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210029, China��
2. Department of Earth and Environmental Sciences, Università di Milano-Bicocca, Milano 20126, Italy
The age range of the major intra-plate volcanic event that affected the northern Indian margin in the Early Cretaceous is here defined precisely by detrital zircon geochronology. U–Pb ages of Early Cretaceous detrital zircons found in the Cretaceous to the Paleocene sandstones cluster mainly between 142 Ma and 123 Ma in the northern Tethys Himalayan unit, and between 140 Ma and 116 Ma in the southern Tethys Himalayan unit. The youngest and oldest detrital zircons within this group indicate that volcanism in the source areas started in the latest Jurassic and ended by the early Albian. Stratigraphic data indicate that volcaniclastic sedimentation began significantly earlier in southern Tibet (Tithonian) than in Nepal (Valanginian), and considerably later in Spiti and Zanskar (Aptian/Albian) to the west. This apparent westward migration of magmatism was explained with progressive westward propagation of extensional/transtensional tectonic activity and development of fractures cutting deeply across the Indian continental margin crust. However, detrital zircon geochronology provides no indication of heterochroneity in magmatic activity in the source areas from east to west, and thus lends little support to such a scenario. Westward migration of volcaniclastic sedimentation may thus reflect instead the westward progradation of major drainage systems supplying volcanic detritus sourced from the same volcanic centers in the east. Development of multiple radial drainage away from the domal surface uplift associated with magmatic upwelling, as observed for most large igneous provinces around the world, may also explain why U–Pb ages of detrital zircons tend to cluster around 133–132 Ma (the age of the Comei igneous province) in Tethys Himalayan units, but around 118–117 Ma (the age of the Rajmahal igneous province) in Lesser Himalayan units.
We thank Lei Chen and Jian-Gang Wang for their assistance both in the field and in the lab. Discussion with Rufus Bertle on Cretaceous stratigraphy of Spiti was highly appreciated. We are grateful to Zeng-Zhao Feng, Lin-Zhi Gao, and Harutaka Sakai, for their constructive comments. This study was financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB03010100), the Chinese MOST 973 Project (2012CB822001) and the NSFC Project (41172092). This is a contribution to the IGCP609.
Xiu-Mian Hu,Eduardo Garzanti,Wei An. Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology[J]. Journal of Palaeogeography, 2015, 4(1): 85-98.
Xiu-Mian Hu,Eduardo Garzanti,Wei An. Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology[J]. Journal of Palaeogeography, 2015, 4(1): 85-98.
Ali, J. R., Aitchison, J. C., 2008. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166-35 Ma). Earth-Science Reviews, 88(3-4): 145-166.
Baksi, A. K., 1995. Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, northeastern India. Chemical Geology, 121(1-4): 73-90.
Baud, A., Gaetani, M., Garzanti, E., Fois, E., Nicora, A., Tintori, A., 1984. Geological observations in southeastern Zanskar and adjacent Lahul area (northwestern Himalaya). Eclogae Geologicae Helvetiae, 77(1): 171-197.
Bertle, R. J., Suttner, T. J., 2005. New biostratigraphic data for the Chikkim Formation (Cretaceous, Tethyan Himalaya, India). Cretaceous Research, 26(6): 882-894.
Black, L., Gulson, B., 1978. The age of the Mud Tank carbonatite, Strangways range, Northern Territory. BMR Journal of Australian Geology and Geophysics, 3(3): 227-232.
Bordet, P., Colchen, M., Krummenacher, D., Le Fort, P., Mouterde, R., Remy, M., 1971. Recherches G��ologiques dans l��Himalaya du Nepal, Region de la Thakkhola. Paris: Centre National de la Recherches Scientific, 1-279.
Cai, F. L., Ding, L., Yue, Y. H., 2011. Provenance analysis of Upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth and Planetary Science Letters, 305(1-2): 195-206.
Cawood, P. A., Johnson, M. R. W., Nemchin, A. A., 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth and Planetary Science Letters, 255(1-2): 70-84.
Clift, P. D., Carter, A., Jonell, T. N., 2014. U-Pb dating of detrital zircon grains in the Paleocene Stumpata Formation, Tethyan Himalaya, Zanskar, India. Journal of Asian Earth Sciences, 82: 80-89.
Cox, K. G., 1989. The role of mantle plumes in the development of continental drainage patterns. Nature, 342(6252): 873-877.
DeCelles, P. G., Gehrels, G. E., Quade, J., LaReau, B., Spurlin, M., 2000. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, 288(5465): 497-499.
DeCelles, P. G., Robinson, D. M., Quade, J., Ojha, T. P., Garzione, C. N., Copeland, P., Upreti, B. N., 2001. Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics, 20(4): 487-509.
DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A. J., Carter, A., Garzanti, E., 2004. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters, 227(3-4): 313-330.
Du, X. J., Chen, X., Wang, C. S., Wei, Y. S., Li, Y. L., Jansa, L., 2015. Geochemistry and detrital zircon U-Pb dating of Lower Cretaceous volcaniclastics in the Babazhadong section, Northern Tethyan Himalaya: Implications for the breakup of Eastern Gondwana. Cretaceous Research, 52, Part A: 127-137, in press.
D��rr, S. R. B., Gibling, M. R., 1994. Early Cretaceous volcaniclastic and quartzose sandstones from north central Nepal: Composition, sedimentology and geotectonic significance. Geologische Rundschau, 83(1): 62-75.
Gansser, A., 1964. Geology of the Himalayas. New York: John Wiley and Sons Ltd., 1-289.
Garzanti, E., 1991. Stratigraphy of the Early Cretaceous Giumal Group (Zanskar Range, northern India). Rivista Italiana di Paleontologia e Stratigrafia, 97(3-4): 485-509.
Garzanti, E., 1993a. Himalayan ironstones, ��superplumes��, and the breakup of Gondwana. Geology, 21(2): 105-108.
2.3.CO;2 target="_blank">
Garzanti, E., 1993b. Sedimentary evolution and drowning of a passive margin shelf (Giumal Group; Zanskar Tethys Himalaya, India): Palaeoenvironmental changes during final break-up of Gondwanaland. Geological Society, London, Special Publications, 74: 277-298.
Garzanti, E., 1999. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian Earth Sciences, 17(5-6): 805-827.
Garzanti, E., Hu, X., 2014. Latest Cretaceous Himalayan tectonics: Obduction, collision or Deccan-related uplift? Gondwana Research: in press. doi: 10.1016/j.gr.2014.03.010.
Garzanti, E., Pagni Frette, M., 1991. The stratigraphic succession of the Thakkhola region (central Nepal) �� Comparisons with the northwestern Tethys Himalaya. Rivista Italiana di Paleontologia e Stratigrafia, 96(1): 3-26.
Garzanti, E., Casnedi, R., Jadoul, F., 1986. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya. Sedimentary Geology, 48(3-4): 237-265.
Garzanti, E., Haas, R., Jadoul, F., 1989. Ironstones in the Mesozoic passive margin sequence of the Tethys Himalaya (Zanskar, Northern India): Sedimentology and metamorphism. Geological Society, London, Special Publications, 46: 229-244.
Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N., Yin, A., 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30(5): TC5016.
Ghatak, A., Basu, A. R., 2011. Vestiges of the Kerguelen plume in the Sylhet Traps, northeastern India. Earth and Planetary Science Letters, 308(1-2): 52-64.
Gibling, M. R., Gradstein, F. M., Kristiansen, I. L., Nagy, J., Sarti, M., Wiedmann, J., 1994. Early Cretaceous strata of the Nepal Himalayas: Conjugate margins and rift volcanism during Gondwanan breakup. Journal of the Geological Society, 151(2): 269-290.
Groppo, C., Lombardo, B., Rolfo, F., Pertusati, P., 2007. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). Journal of Metamorphic Geology, 25(1): 51-75.
Guillot, S., Garzanti, E., Baratoux, D., Marquer, D., Mah��o, G., de Sigoyer, J., 2003. Reconstructing the total shortening history of the NW Himalaya. Geochemistry, Geophysics, Geosystems, 4(7): 1064.
Hodges, K. V., 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112(3): 324-350.
2.0.CO;2 target="_blank">
Hu, X. M., Jansa, L., Wang, C. S., 2008. Upper Jurassic-Lower Cretaceous stratigraphy in south-eastern Tibet: A comparison with the western Himalayas. Cretaceous Research, 29(2): 301-315.
Hu, X. M., Jansa, L., Chen, L., Griffin, W. L., O��Reilly, S. Y., Wang, J. G., 2010. Provenance of Lower Cretaceous Wolong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sedimentary Geology, 223(3-4): 193-205.
Hu, X. M., Sinclair, H. D., Wang, J. G., Jiang, H. H., Wu, F. Y., 2012. Late Cretaceous-Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: Implications for the timing of India-Asia initial collision. Basin Research, 24(5): 520-543.
Hu, X. M., An, W., Wang, J. G., Garzanti, E., Guo, R. H., 2014. Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion. Tectonophysics, 621: 60-68.
Jackson, S. E., Pearson, N. J., Griffin, W. L., Belousova, E. A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69.
Jadoul, F., Berra, F., Garzanti, E., 1998. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet). Journal of Asian Earth Sciences, 16(2-3): 173-194.
Kent, R. W., Pringle, M. S., Muller, R. D., Saunders, A. D., Ghose, N. C., 2002. 40Ar/39Ar geochronology of the Rajmahal basalts, India, and their relationship to the Kerguelen Plateau. Journal of Petrology, 43(7): 1141-1153.
Klootwijk, C. T., 1984. A review of Indian Phanerozoic palaeomagnetism: Implications for the India-Asia collision. Tectonophysics, 105(1-4): 331-353.
Kohn, M. J., Paul, S. K., Corrie, S. L., 2010. The lower Lesser Himalayan sequence: A Paleoproterozoic arc on the northern margin of the Indian plate. Geological Society of America Bulletin,
122(3-4): 323-335.
Li, G. B., Jiang, G. Q., Hu, X. M., Wan, X. Q., 2009. New biostratigraphic data from the Cretaceous Bolinxiala Formation in Zanda, southwestern Tibet of China, and their paleogeographic and paleoceanographic implications. Cretaceous Research, 30(4): 1005-1018.
Liu, Y. Q., Ji, Q., Jiang, X. J., Kuang, H. W., Ji, S. A., Gao, L. F., Zhang, Z. G., Peng, N., Yuan, C. X., Wang, X. R., Xu, H., 2013. U-Pb zircon ages of Early Cretaceous volcanic rocks in the Tethyan Himalaya at Yangzuoyong Co Lake, Nagarze, southern Tibet, and implications for the Jurassic/Cretaceous boundary. Cretaceous Research, 40: 90-101.
Ludwig, K. R., 2012. Isoplot/Ex Version 4: A Geochronological Toolkit for Microsoft Excel. Berkeley: Geochronology Center.
Lukeneder, A., Suttner, T. J., Bertle, R. J., 2013. New ammonoid taxa from the Lower Cretaceous Giumal Formation of the Tethyan Himalaya (Northern India). Palaeontology, 56(5): 991-1028.
Moore, A. E., Blenkinsop, T., 2002. The role of mantle plumes in the development of continental-scale drainage patterns: The southern African example revisited. South African Journal of Geology, 105: 353-360.
McKenzie, N. R., Hughes, N. C., Myrow, P. M., Xiao, S., Sharma, M., 2011. Correlation of Precambrian-Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth and Planetary Science Letters, 312(3-4): 471-483.
Myrow, P. M., Hughes, N. C., Paulsen, T. S., Williams, I. S., Parcha, S. K., Thompson, K. R., Bowring, S. A., Peng, S. C., Ahluwalia, A. D., 2003. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters, 212(3-4): 433-441.
Myrow, P. M., Hughes, N. C., Goodge, J. W., Fanning, C. M., Williams, I. S., Peng, S., Bhargava, O. N., Parcha, S. K., Pogue, K. R., 2010. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. Geological Society of America Bulletin, 122(9-10): 1660-1670.
Nagy, J., Gradstein, F. M., Gibling, M. R., Thomas, F. C., 1995. Foraminiferal stratigraphy and paleoenvironments of Late Jurassic to Early Cretaceous deposits in Thakkhola, Nepal. Micropaleontology, 41(2): 143-170.
Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti, E., Godin, L., Han, J., Liebke, U., Oliver, G., Parrish, R., Vezzoli, G., 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research: Solid Earth, 115(B12): B12416.
Norton, I. O., Sclater, J. G., 1979. A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. Journal of Geophysical Research: Solid Earth, 84(B12): 6803-6830.
Ogg, J. G., Hinnov, L. A., Huang, C., 2012. Chapter 27: Cretaceous. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., Ogg, G. M., (eds). The Geologic Time Scale. Boston: Elsevier, 793-853.
Patzelt, A., Li, H., Wang, J., Appel, E., 1996. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: Evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics, 259(4): 259-284.
Powell, C. M., Roots, S. R., Veevers, J. J., 1988. Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics, 155(1-4): 261-283.
Premoli Silva, I., Garzanti, E., Gaetani, M., 1991. Stratigraphy of the Chikkim and Fatu La Formations in the Zangla and Zumlung units (Zanskar Range, India) with comparisons to the Thakkhola region (central Nepal); Mid-Cretaceous evolution of the Indian passive margin. Rivista Italiana di Paleontologia e Stratigrafia, 97(3-4): 511-564.
Qiu, B. B., Zhu, D. C., Zhao, Z. D., Wang, L. Q., 2010. The westward extension of Comei fragmented large igneous province in southern Tibet and its implications. Acta Petrologica Sinica, 26(7): 2207-2216 (in Chinese with English abstract).
Ratschbacher, L., Frisch, W., Liu, G., Chen, C., 1994. Distributed deformation in southern and western Tibet during and after the India-Asia collision. Journal of Geophysical Research: Solid Earth, 99(B10): 19917-19945.
Sakai, H., 1983. Geology of the Tansen Group of the Lesser Himalaya in Nepal. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 25: 27-74.
Sakai, H., 1989. Rifting of the Gondwanaland and uplifting of the Himalayas recorded in Mesozoic and Tertiary fluvial sediments in the Nepal Himalayas. In: Taira, A., Masuda, F., (eds). Sedimentary Facies in the Active Plate Margin. Tokyo: Terra Scientific Publishing Company, 723-732.
Sakai, H., Hamamoto, R., Arita, K., 1992. Radiometric ages of alkaline volcanic rocks from the upper Gonwana of the Lesser Himalayas, west central Nepal, and their tectonic significance. Bulletin of the Department of Geology, Tribhuvan University, Kathmandu, Nepal, 2: 65-74.
Sciunnach, D., Garzanti, E., 2012. Subsidence history of the Tethys Himalaya. Earth-Science Reviews, 111(1-2): 179-198.
van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., Gassm?ller, R., 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. Journal of Geophysical Research: Solid Earth, 116(B6): B6101.
Wan, X. Q., Scott, R., Chen, W., Gao, L. F., Zhang, Y. Y., 2011. Early Cretaceous stratigraphy and SHRIMP U-Pb age constrain the Valanginian-Hauterivian boundary in southern Tibet. Lethaia, 44(2): 231-244.
Wang, J. G., Hu, X. M., Jansa, L., Huang, Z. C., 2011. Provenance of the Upper Cretaceous-Eocene deep-water sandstones in Sangdanlin, Southern Tibet: Constraints on the timing of initial India-Asia collision. The Journal of Geology, 119(3): 293-309.
Willems, H., Zhou, Z., Zhang, B., Gr?fe, K. U., 1996. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geologische Rundschau, 85(4): 723-754.
Xia, Y., Zhu, D. C., Wang, Q., Zhao, Z. D., Liu, D., Wang, L. Q., Mo, X. X., 2014. Picritic porphyrites and associated basalts from the remnant Comei Large Igneous Province in SE Tibet: Records of mantle-plume activity. Terra Nova, 26(6): 487-494.
Yin, A., 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1-2): 1-131.
Zhang, X. Y., Wei, Y. S., Wang, C. S., Zhang, X. L., Shang, Y. M., 2014. Provenance analysis and its tectonic significance of Early Cretaceous Rilang Formation in Zhongba area, southern Tibet. Acta Petrologica Sinica, 30: in press.
Zhu, B., Kidd, W. S. F., Rowley, D. B., Currie, B. S., 2004. Chemical compositions and tectonic significance of chrome-rich spinels in the Tianba Flysch, southern Tibet. Journal of Geology, 112(4): 417-434.
Zhu, D. C., Pan, G. T., Mo, X. X., Wang, L. Q., Liao, Z. L., Jiang, X. S., Geng, Q. R., 2005. SHRIMP U-Pb zircon dating for the dacite of the Sangxiu Formation in the central segment of Tethyan Himalaya and its implications. Chinese Science Bulletin, 50(6): 563-568.
Zhu, D. C., Pan, G. T., Mo, X. X., Liao, Z. L., Jiang, X. S., Wang, L. Q., Zhao, Z. D., 2007. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: A probable example of plume-lithosphere interaction. Journal of Asian Earth Sciences, 29(2-3): 320-335.
Zhu, D. C., Mo, X. X., Pan, G. T., Zhao, Z. D., Dong, G. C., Shi, Y. R., Liao, Z. L., Wang, L. Q., Zhou, C. Y., 2008. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet: Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere? Lithos, 100(1-4): 147-173.
Zhu, D. C., Chung, S. L., Mo, X. X., Zhao, Z. D., Niu, Y. L., Song, B., Yang, Y. H., 2009. The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 37(7): 583-586.
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y., Mo, X. X., 2011. Lhasa terrane in southern Tibet came from Australia. Geology, 39(8): 727-730.