1 Ghoneum A, Afify H, Salih Z, et al.Role of tumor microenvironment in ovarian cancer pathobiology[J].Oncotarget, 2018, 9(32):22832-22849. 2 Jones BA, Varambally S, Arend RC.Histone methyltransferase EZH2:a therapeutic target for ovarian cancer[J].Mol Cancer Ther, 2018, 17(3):591-602. 3 Vetter MH, Hays JL.Use of targeted therapeutics in epithelial ovarian cancer:a review of current literature and future directions[J].Clin Ther, 2018, 40(3):361-371. 4 Icard P, Shulman S, Farhat D, et al.How the Warburg effect supports aggressiveness and drug resistance of cancer cells?[J].Drug Resist Updat, 2018, 38:1-11. 5 Liu Y, Huo Y, Wang D, et al.MiR-216a-5p/Hexokinase 2 axis regulates uveal melanoma growth through modulation of Warburg effect[J].Biochem Biophys Res Commun, 2018, 501(4):885-892. 6 Tekade RK, Sun X.The Warburg effect and glucose-derived cancer theranostics[J].Drug Discov Today, 2017, 22(11):1637-1653. 7 Baek N, Seo OW, Kim M, et al.Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time[J].Onco Targets Ther, 2016, 9:7207-7218. 8 Choi J, Kang HJ, Kim SZ, et al.Antioxidant effect of astragalin isolated from the leaves of Morus alba L.against free radical-induced oxidative hemolysis of human red blood cells[J].Arch Pharm Res, 2013, 36(7):912-917. 9 Kim YH, Choi YJ, Kang MK, et al.Astragalin inhibits allergic inflammation and airway thickening in ovalbumin-challenged mice[J].J Agric Food Chem, 2017, 65(4):836-845. 10 Riaz A, Rasul A, Hussain G, et al.Astragalin:a bioactive phytochemical with potential therapeutic activities[J].Adv Pharmacol Sci, 2018, 2018:9794625. 11 Li W, Hao J, Zhang L, et al.Astragalin reduces hexokinase 2 through increasing miR-125b to inhibit the proliferation of hepatocellular carcinoma cells in vitro and in vivo[J].J Agric Food Chem, 2017, 65(29):5961-5972. 12 Chen M, Cai F, Zha D, et al.Astragalin-induced cell death is caspase-dependent and enhances the susceptibility of lung cancer cells to tumor necrosis factor by inhibiting the NF-кB pathway[J].Oncotarget, 2017, 8(16):26941-26958. 13 Zilla MK, Nayak D, Amin H, et al.4′-Demethyl-deoxypodophyllotoxin glucoside isolated from Podophyllum hexandrum exhibits potential anticancer activities by altering Chk-2 signaling pathway in MCF-7 breast cancer cells[J].Chem Biol Interact, 2014, 224:100-107. 14 Akram M.Mini-review on glycolysis and cancer[J].J Cancer Educ, 2013, 28(3):454-457. 15 Ganapathy-Kanniappan S, Geschwind JF.Tumor glycolysis as a target for cancer therapy:progress and prospects[J].Mol Cancer, 2013, 12:152. 16 Xu XD, Shao SX, Jiang HP, et al.Warburg effect or reverse Warburg effect? A review of cancer metabolism[J].Oncol Res Treat, 2015, 38(3):117-122. 17 Courtnay R, Ngo DC, Malik N, et al.Cancer metabolism and the Warburg effect:the role of HIF-1 and PI3K[J].Mol Biol Rep, 2015, 42(4):841-851. 18 Banerjee A, Arvinrad P, Darley M, et al.The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells[J].Oncotarget, 2018, 9(33):23274-23288. 19 Huang D, Li C, Zhang H.Hypoxia and cancer cell metabolism[J].Acta Biochim Biophys Sin, 2014, 46(3):214-219. 20 Shi Y, Liu S, Ahmad S, et al.Targeting key transporters in tumor glycolysis as a novel anticancer strategy[J].Curr Top Med Chem, 2018[Epub ahead of print]. |