相似;但δ18OPDB正偏, 87Sr/86Sr 相对高(0.70887~0.70939)、但与震旦纪海水(0.7087~0.7094)相似,从皮壳边缘、暗色(蓝细菌)至核部,微区δ18OPDB、δ13CPDB显示了环带内变化较小、环带外的强烈负漂移;云化程度的增加,δ18OPDB、δ13CPDB负偏明显, 87Sr/86Sr 增加。皮壳—葡萄状白云岩中Al2O3 、Fe2O3 、MnO、LREE/HREE值均低于基质泥粉晶云岩对应值、稀土总量介于基质与粉细晶云岩之间,而Na2O+K2O、P2O5、 Sr、Hg、Cu、Sr/Ba、Sr/Mn、δCe值均高于基质泥粉晶云岩对应值;且随着云化程度的提高,总体呈现出Mn含量增加,Al2O3 、Fe2O3 、Na2O+K2O、P2O5、Sr/Ba、Fe/Mn等值递减的趋势;由此判断皮壳状—葡萄状白云石可能是弱还原、保存较好的海水中形成,或在成岩早期或浅埋藏孔隙海水为主的流体中形成、部分经历了较强的大气水作用改造。"/>
δ13CPDB is 2.50‰(1.80‰~3.16‰),δ18OPDB is-3.30‰(-6.40‰~0.86‰), 87Sr/86Sr is 0.7091(0.7089~0.7096),compared with the values of matrix dolostone. The botryoidal dolostone have rather high positive of δ18OPDB and 87Sr/86Sr(within the change values of coeval normal sea-water: 0.7087~0.7094)with a similar δ13CPDB. The δ13C and δ18O of zonation varies from the dark rimming to the luminescent centre varies slightly decreasing or increasing,while the strong negative deplete of δ13C and δ18O in outer of zonation,shows the tendency of negative deplete of δ13C and δ18O and increasing of 87Sr/86Sr and Mn,decresing of the contents of Al2O3 、Fe2O3、Na2O+K2O、P2O5、Sr/Ba、Fe/Mn. Coupled with a higher dolomitization. The contents of Al2O3、Fe2O3 、MnO are relatively lower,and Na2O+K2O,P2O5,Sr,Hg,Cu,and the ratios of Sr/Ba,Sr/Mn are higher in comparison with the values of matrix dolostone. The contents of REE(10.21×10-6~15.75×10-6)with the “Left-leaning”distribution pattern of rare earth elements with LREE depletion,heavy REE enrichment,strong negative CE anomaly,indicated that the botryoidal dolostone was formed either in a well-preserved,weak reduction and oversaturated sea water environment with an increasing of pH value and free oxygen contents in sea waters. Or in a residual sea water of pore fluids in the early stage of diagenesis or shallow buried environment,later partly superimposed by a cyclic subaerial-exposed fresh water."/>
Discovery and discussion on origin of botryoidal dolostone in the Upper Sinian in North Tarim Basin
Qian Yixiong1, He Zhiliang2, Li Huili2, Chen Yue1, Jin Ting3, Sha Xuguang4, Li Hongquan4
1 Wuxi Institute of Petroleum Geology,Petroleum Exploration & Production Research Institute,SINOPEC,Wuxi 214126,Jiangsu ; 2 Petroleum Exploration & Production Research Institute,SINOPEC,Beijing 100083 ; 3 No.2 Oil Production Factory,Jiangsu Oilfield Company,SINOPEC,Jinhu 211000,Jiangsu ; 4 Petroleum Exploration & Production, Research Institute,Northwest Company,SINOPEC,Urümqi 830011,Xinjiang
Abstract:The botryoidal dolostone of a unusual textures features in Qigebulake Formation,in the Upper Sinian developed at Dong'ergou section and Well XH 101 of northern Tarim Basin,has been firstly reported. Constraining its origin based on lithology and geochemical data,the shell-comb or botryoidal dolostone,which consists of shrub fibrous cement,bladed radial as well as granular dolomite crystal with alternately dark and luminescent and zonation,the average of botryoidal dolostone of δ13CPDB is 2.50‰(1.80‰~3.16‰),δ18OPDB is-3.30‰(-6.40‰~0.86‰), 87Sr/86Sr is 0.7091(0.7089~0.7096),compared with the values of matrix dolostone. The botryoidal dolostone have rather high positive of δ18OPDB and 87Sr/86Sr(within the change values of coeval normal sea-water: 0.7087~0.7094)with a similar δ13CPDB. The δ13C and δ18O of zonation varies from the dark rimming to the luminescent centre varies slightly decreasing or increasing,while the strong negative deplete of δ13C and δ18O in outer of zonation,shows the tendency of negative deplete of δ13C and δ18O and increasing of 87Sr/86Sr and Mn,decresing of the contents of Al2O3 、Fe2O3、Na2O+K2O、P2O5、Sr/Ba、Fe/Mn. Coupled with a higher dolomitization. The contents of Al2O3、Fe2O3 、MnO are relatively lower,and Na2O+K2O,P2O5,Sr,Hg,Cu,and the ratios of Sr/Ba,Sr/Mn are higher in comparison with the values of matrix dolostone. The contents of REE(10.21×10-6~15.75×10-6)with the “Left-leaning”distribution pattern of rare earth elements with LREE depletion,heavy REE enrichment,strong negative CE anomaly,indicated that the botryoidal dolostone was formed either in a well-preserved,weak reduction and oversaturated sea water environment with an increasing of pH value and free oxygen contents in sea waters. Or in a residual sea water of pore fluids in the early stage of diagenesis or shallow buried environment,later partly superimposed by a cyclic subaerial-exposed fresh water.
Qian Yixiong,He Zhiliang,Li Huili et al. Discovery and discussion on origin of botryoidal dolostone in the Upper Sinian in North Tarim Basin[J]. JOPC, 2017, 19(2): 197-210.
1 陈明,许效松,万方,尹福光. 2002. 上扬子台地晚震旦世灯影组中葡萄状雪花状白云岩的成因意义. 矿物岩石,22(4): 33-37. [Chen M,Xu X S,Wan F,Yin F G. 2002. Gensis and significance of grape and show flake-shaped dolomite from Dengying Formation of Upper Sinian in Upper Yangtze platform region. Journal of Mineral Petrology,22(4): 33-37] 2 方少仙,侯方浩,董兆雄. 2003. 上震旦统灯影组中非叠层石生态系兰细菌白云岩. 沉积学报,21(1): 96-105. [Fang S X,Hou F H,Dong Z X. 2003. Non-stromatoltite ecologic system cyanobacteria dolostone in Dengying Formation of Upper Sinian. Acta Sedimentologica Sinica,21(1): 96-105] 3 高振家,王务严,李永安,彭昌文,肖兵. 1985. 新疆阿克苏乌什震旦系·地质矿产部中国晚前寒武纪研成果之七. 乌鲁木齐: 新疆人民出版社. [Gao Z J,Wang W Y,Li Y A,Peng C W,Xiao B. 1985. The Sinian System of Aksu-Wushi Region,Xinjiang,China. Urümqi: Xinjiang People's Publishing House] 4 郝毅,周进高,陈旭,潘立银,胡圆圆,胡安平. 2015. 四川盆地灯影组“葡萄花边”状白云岩成因及地质意义. 海相油气地质, 20(4): 57-64 . [Hao Y,Zhou J G,Chen X,Pan L Y,Hu Y Y,Hu A P. 2015. Genesis and geological significance of Upper Sinian Dengying dolostone with grape-lace shaped cement,Sichuan Basin. Marine Origin Petroleum Geology,20(4): 57-64] 5 刘怀仁,刘明星,胡登新,付强. 1991. 川西南上震旦统灯影组沉积期的暴露标志及其意义. 沉积与特提斯地质,11(5): 1-10. [Liu H R,Liu M X,Hu D X,Fu Q. 1991. The exposure indicators formed during the deposition of the Upper Sinian Dengying Formation in southwestern Sichuan and their significance. Sedimentary Geology and Tethyan Geology,11(5): 1-10] 6 罗平,王石,李朋威,宋金民,金廷福,王果谦,杨式升. 2013. 微生物碳酸盐岩油气储集层研究现状与展望. 沉积学报,31(5): 807-823. [Luo P,Wang S,Li P W,Song J M,Jin T F,Wang G Q,Yang S S. 2013. Review and prospectives of microbial carbonate reservoirs. Acta Sedimentologica Sinica,31(5): 807-823] 7 牟传龙,王秀平,梁薇,王远翀,门欣. 2015. 上扬子区灯影组白云岩葡萄体特征及成因初探: 以南江杨坝地区灯影组一段为例. 沉积学报,33(6): 1097-1110. [Mou C L,Wang X P,Liang W,Wang Y C,Men X. 2015. Characteristics and genesis of grape-like stone of dolomite in Sinian Dengying Formation in Yangtze region: A case from the first section Dengying formation in Yangba,Nanjiang,Sichuan Province. Acta Sedimentologica Sinica,33(6): 1097-1110] 8 钱一雄,陈强路,陈跃,罗月明. 2009. 碳酸盐岩中缝洞方解石成岩环境的矿物地球化学判识: 以塔河油田的沙79井和沙85井为例. 沉积学报,27(6): 1027-1032. [Qian Y X,Chen Q L,Chen Y,Luo Y M. 2009. Mineralogical and geochemical identification for diagenetic settings of paleo-caves and fractures-filling & vugs calcites in carbonate: Taking wells S79 and S85 for example. Acta Sedimentologica Sinica,27(6): 1027-1032] 9 钱一雄,杜永明,陈代钊,尤东华,张军涛,陈跃,刘忠宝. 2014. 塔里木盆地肖尔布拉克上震旦统奇格布拉克组剖面层序界面与沉积相分析. 石油实验地质,36(1): 1-8. [Qian Y X,Du Y M,Chen D Z,You D H,Zhang J T,Chen Y,Liu Z B. 2014. The stratigraphic sequences and sedimentation analysis of Qigebulak Fm of the upper Sinian at Xianerbulak of Aksu in Tarim Basin. Petroleum Geology & Experiment,36(1): 1-8] 10 施泽进,梁平,王勇,胡修权,田亚铭,王长城. 2011. 川东南地区灯影组葡萄石地球化学特征及成因分析. 岩石学报,27(8): 2263-2271. [Shi Z J,Liang P,Wang Y,Hu X Q,Tian Y M,Wang C C. 2011. Geochemical characteristics and genesis of grapestone in Sinian Dengying Formation in south-eastern Sichuan basin. Acta Petrologica Sinica,27(8): 2263-2271] 11 宋金民,罗平,杨式升,翟秀芬,周刚,陆朋朋. 2012. 塔里木盆地苏盖特布拉克地区下寒武统肖尔布拉克组碳酸盐岩微生物建造特征. 古地理学报,14(3): 404-437. [Song J M,Luo P,Yang S S,Zhai X F,Zhou G,Lu P P. 2012. Carbonate rock microbial construction of the Lower Cambrian Xiaoerblak Formation in Sugaitblak are,Tarim Basin. Journal of Palaeogeography(Chinese Edition),14(3): 404-437] 12 王小林,胡文瑄,陈琪,李庆,朱井泉,张军涛. 2010. 塔里木盆地柯坪地区上震旦统藻白云岩特征及其成因机理. 地质学报,84(10): 1479-1494. [Wang X L,Hu W X,Chen Q,Li Q,Zhu J Q,Zhang J T. 2010. Characteristics and formation mechanism of Upper Sinian Algal Dolomite at the Kalpin Area,Tarim Basin,NW China. Acta Geologica Sinica,84(10): 1479-1494] 13 向芳,陈洪德,张锦泉. 1998. 资阳地区震旦系充填白云石与古岩溶. 成都理工学院学报,25(3): 436-441. [Xiang F,Chen H D,Zhang J Q. 1998. Filling dolomites and paleokarst of Sinian in Ziyang area. Journal of Chengdu Universtiy of Technology,25(3): 436-441] 14 张杰,Brian Jones,潘立银,周进高,秦玉娟,郝毅,武明德. 2014. 四川盆地震旦系灯影组葡萄状白云岩成因. 古地理学报,16(5): 715-725. [Zhang J,Brian J,Pan L Y,Zhou J G,Qin Y J,Hao Y,Wu M D. 2014. Origin of botryoidal dolostone of the Sinian Dengying Formation in Sichuan Basin. Journal of Palaeogeography(Chinese Edition),16(5): 715-725] 15 张师本,倪寓南,龚福华,卢辉楠,黄智斌,林焕令. 2003. 塔里木盆地周缘地层考察指南. 北京: 石油工业出版社, 1-280. [Zhang S B,Ni Y N,Gong F H,Lu H N,Huang Z B,Lin H L. 2003. A Guide to the Stratigraphic Investigation on the Periphery of the Tarim Basin. Beijing: Petroleum Industry Press,1-280] 16 张荫本. 1980. 震旦纪白云岩中的葡萄状构造成因初探. 石油实验地质,(4): 40-43. [Zhang Y B. 1980. Preliminary study on the botryoidal structures in the Sinian dolostones. Petroleum Geology & Experiment,(4): 40-43] 17 Anderson T F,Arthur M A. 2009. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In Stable Isotopes in sedimentary Geology(Columbia,SC: SEPM Short Course),10: 1-151. 18 Cicero A D,Lohmann K C. 2001. Sr/Mg variation during rock-water interaction: Implications for secular changes in the elemental chemistry of ancient seawater. Geochimica et Cosmochimica Acta, 65(5): 741-761. 19 Flügel E. 2004. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application.Berlin: Springer-Verlag: 369-396. 20 Garrison R L,Lee R, Kump,Michael A Arthur. 2013. Shallow water redox conditions from the Permian-Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China. Chemical Geology, 351: 195-208. 21 Gerdes G. 2007. Structures left by modern microbial mats in their host sediments. In: Schieber J,Bose P K,Eriksson P G, et al. (eds). Atlas of Microbial Mat Features Preserved within the Siliciclastic rock record. Amsterdam: Elsevier,5-38. 22 Gerdes G. 2010. What are microbial mats? In: Seckbach J,Oren A(eds). Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems Cellular Origin,Life in Extreme Habitats and Astrobiology,14. Berlin: Springer-Verlag,5-25. 23 Grant M Young. 2013. Precambrian supercontinents,glaciations,atmospheric oxygenation,metazoan evolution and an impact that may have changed the second half of Earth history. Geoscience Frontiers,4(3): 247-261. 24 Halverson G P,Dud S F,Maloof A C,Bowring S A. 2007. Evolution of the 87 Sr/ 86 Sr composition of Neoproterozoic seawater.Palaeongeography,Palaeoclimatology,Palaeoecology,256(3-4): 103-129. 25 Hardie L A. 2003. Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas. Geology,31: 785-788. 26 Hood A S,Wallace M W,Drysdale R N. 2011. Neoproterozoic aragonite-dolomite seas?Widespread marine dolomite precipitation in Cryogenian reef complexes.Geology,39(9): 871-874. 27 Maree Corkeron,Gregory E Webb,Joshua Moulds,Kathleen Gre. 2012. Discriminating stromatolite formation modes using rare earth element geochemistry: Trapping and binding versus in situ precipitation of stromatolites from the Neoproterozoic Bitter Springs Formation,Northern Territory,Australia. Precambrian Research,212-213: 194-206. 28 McCrea J M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18.6(1950): 849-857. 29 Nicholls. 1967. Trace elements in sediments: An assessment of their possible Utility as depth indicators. Marine Geology,5: 439-555. 30 Susanne Göb,Anselm Loges,Nils Nolde,Michael Bau,Dorrit E. Jacob,Gregor Markl. 2013. Major and trace element compositions(including REE)of mineral,thermal,mine and surface waters in SW Germany and implications for water-rock interaction. Applied Geochemistry, 33: 127-152.