Geochemical features and its geological significances of the Upper Sinian Qigeblak Formation in Wushi area,Tarim Basin
Zheng Jian-Feng1,2, Liu Yu1,3, Zhu Yong-Jing1,2, Liang Feng1,2
1 Key Laboratory of Carbonate Reservoir,CNPC,Hangzhou 310023,China; 2 PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,China; 3 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China
Abstract:The Cambrian subsalt formation in Tarim Basin is rich in abundant hydrocarbon resource. The Upper Sinian Qigeblak Formation is one of the important exploration targets in this field. However,no exploration breakthrough has been made so far in this formation. The limited knowledge of lithofacies paleogeography and reservoir genesis led to the restriction of exploration breakthrough. In this paper,the Kungaikuotan outcrop of Wushi area located at NW Tarim Basin is selected as the study region. Based on detailed stratigraphic description,analysis on 104 petrographic thin sections,and multi-parameters geochemical data analysis(major and trace elements,REEs,carbon-oxygen and strontium isotope,the order degree of dolomite and in-situ U-Pb dating),the sedimentary environment of Qigeblak Formation and genesis of dolomite have been studied. It was found that: (1)the Qigeblak Formation of the Kungaikuotan section in the Wushi area of Tarim Basin has the thickness of 141 m,developing three kinds of microbial dolomite(e.g.,stromatolite,clotted limestone,foam laminated stone),two kinds of grainstone related with microbial action(oolite dolomite and grain dolomite). The Qigeblak Formation can be divided into four sections according to the combination of facies sequence,forming the lithofacies assemblage in carbonate gentle slope from inner ramp tidal flat to inner ramp microbial mound/shoal from bottom to up;(2)The sedimentary period of Qigeblak Formation was in a shallow sea water under warm and dry climate background. Seawater has high salinity,high water temperature and oxidation-weak oxidation characteristics and the sea level firstly gradually rised and then declined rapidly;(3)Dolomitization of the Qigeblak Formation took place in penecontemporaneous-early diagenetic period and the dolomitization fluid was the seawater with high salinity. These research results are of great significance to lithofacies palaeogeographic mapping in Late Sinian,Tarim Basin and analysis of reservoir genesis.
Zheng Jian-Feng,Liu Yu,Zhu Yong-Jing et al. Geochemical features and its geological significances of the Upper Sinian Qigeblak Formation in Wushi area,Tarim Basin[J]. JOPC, 2021, 23(5): 983-998.
[1] 胡明毅,肖传姚,龚文平. 1998. 湖北随州上震旦统灯影组白云岩成因. 石油与天然气地质, 19(1): 85-86,90. [Hu M Y,Xiao C Y,Gong W P. 1998. The genesis of the dolomites of the Upper Sinian Dengying Formation in Suizhou,Hubei. Oil and Gas Geology, 19(1): 85-86,90] [2] 黄擎宇,刘伟,张艳秋,石书缘,王坤. 2016. 塔里木盆地中央隆起区上寒武统—下奥陶统白云岩地球化学特征及白云石化流体演化规律. 古地理学报, 18(4): 661-676. [Huang Q Y,Liu W,Zhang Y Q,Shi S Y,Wang K. 2016. Geochemistry and evolution of dolomitizing fluids of the Upper Cambrian-Lower Ordovician dolostones in Central Uplift,Tarim Basin. Journal of Palaeogeography(Chinese Edition), 18(4): 661-676] [3] 贾承造. 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社,1-438. [Jia C Z.1997. Tectonic Characteristics and Petroleum of Tarim Basin,China. Beijing: Petroleum Industry Press,1-438] [4] 李朋威,罗平,宋金民,金廷福,王果谦. 2015. 塔里木盆地西北缘上震旦统白云岩储层特征. 海相油气地质, 20(4): 1-12. [Li P W,Luo P,Song J M,Jin T F,Wang G Q. 2015. Characteristics of Upper Sinian dolomite reservoir in the northwestern margin of Tarim Basin. Marine Origin Petroleum Geology, 20(4): 1-12] [5] 倪善芹,侯泉林,王安建,琚宜文. 2010. 碳酸盐岩中锶元素地球化学特征及其指示意义: 以北京下古生界碳酸盐岩为例. 地质学报, 84(10): 1510-1516. [Ni S Q,Hou Q L,Wang A J,Ju Y W. 2010. Geochemical characteristics of carbonate rocks and its geological implications: taking the Lower Paleozoic carbonate rock of Beijing area as an example. Acta Geologica Sinica, 84(10): 1510-1516] [6] 钱一雄,何治亮,李慧莉,陈跃,金婷,沙旭光,李洪全. 2017. 塔里木盆地北部上震旦统葡萄状白云岩的发现及成因探讨. 古地理学报, 19(2): 197-210. [Qian Y X,He Z L,Li H L,Chen Y,Jin T,Sha X G,Li H Q. 2017. Discovery and discussion on origin of botryoidal dolostone in the Upper Sinian in North Tarim Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 197-210] [7] 邵龙义,窦建伟,张鹏飞. 1996. 西南地区晚二叠世氧、碳稳定同位素的古地理意义. 地球化学, 25(6): 575-581. [Shao L Y,Dou J W,Zhang P F. 1996. Paleogeographic significances of carbon and oxygen isotopes in late Permian rocks of southwest China. Geochimica, 25(6): 575-581] [8] 石开波,刘波,田景春,潘文庆. 2016. 塔里木盆地震旦纪沉积特征及岩相古地理. 石油学报, 37(11): 1343-1360. [Shi K B,Liu B,Tian J C,Pan W Q. 2016. Sedimentary characteristics and lithofacies paleogeography of Sinian in Tarim Basin. Acta Petrolei Sinica, 37(11): 1343-1360] [9] 石书缘,刘伟,黄擎宇,王铜山,周慧,王坤,马奎. 2017. 塔里木盆地北部震旦系齐格布拉克组白云岩储层特征及成因. 天然气地球科学, 28(8): 1226-1234. [Shi S Y,Liu W,Huang Q Y,Wang T S,Zhou H,Wang K,Ma K. 2017. Dolostone reservoir characteristic and its formation mechanism in Qigeblake Formation,Sinian,north Tarim Basin. Natural Gas Geoscience, 28(8): 1226-1234] [10] 沈安江,胡安平,程婷,梁峰,潘文庆,俸月星,赵建新. 2019. 激光原位U-Pb 同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用. 石油勘探与开发, 46(6): 1062-1074. [Shen A J,Hu A P,Cheng T,Liang F,Pan W Q,Feng Y X,Zhao J X. 2019. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Petroleum Exploration and Development, 46(6): 1062-1074] [11] 王铁冠,韩克猷. 2011. 论中—新元古界的原生油气资源. 石油学报, 32(1): 1-7. [Wang T G,Han K Y. 2011. On Meso-Neoproterozoic primary petroleum resources. Acta Petrolei Sinica, 32(1): 1-7] [12] 王小林,胡文碹,陈琪,李庆,朱井泉,张军涛. 2010. 塔里木盆地柯坪地区上震旦统藻白云岩特征及其成因机理. 地质学报, 84(10): 1479-1494. [Wang X L,Hu W X,Chen Q,Li Q,Zhu J Q,Zhang J T. 2010. Characteristics and formation mechanism of Upper Sinian algal dolomite at the Kalpin area,Tarim Basin. Acta Petrolei Sinica, 84(10): 1479-1497] [13] 田雷,张虎权,刘军,张年春,石小茜. 2020. 塔里木盆地西南部南华纪—震旦纪裂谷分布及原型盆地演化. 石油勘探与开发, 47(6): 1122-1133. [Tian L,Zhang H Q,Liu J,Zhang N C,Shi X X. 2020. Distribution of Nanhua-Sinian rifts and proto-type basin evolution in southwestern Tarim Basin,NW China. Petroleum Exploration and Development, 47(6): 1122-1133] [14] 田兴旺,彭瀚霖,王云龙,杨岱林,孙奕婷,张玺华,文龙,罗冰,洪海涛,王文之,马奎,叶茂,薛玖火. 2020. 川中安岳气田震旦系灯影组四段台缘—台内区储层差异及控制因素. 天然气地球科学, 31(9): 1225-1238. [Tian X W,Peng H L,Wang Y L,Yang D L,Sun Y T,Zhang X H,Wen L,Luo B,Hong H T,Wang W Z,Ma K,Ye M,Xue J H. 2020. Analysis of reservoir difference and controlling factors between the platform margin and the inner area of the fourth member of Sinian Dengying Formation in Anyue Gas Field,central Sichuan. Natural Gas Geoscience, 31(9): 1225-1238] [15] 吴根耀,李曰俊,刘亚雷,赵岩. 2013. 塔里木西北部乌什—柯坪—巴楚地区古生代沉积-构造演化及成盆动力学背景. 古地理学报, 15(2): 203-218. [Wu G Y,Li Y J,Liu Y L,Zhao Y. 2013. Paleozoic sediment-tectonic evolution and basin dynamic settings in Wushi-Kalpin-Bachu area,northwest Tarim. Journal of Palaeogeography(Chinese Edition), 15(2): 203-218] [16] 吴林,管树巍,杨海军,任荣,朱光有,靳久强,张春宇. 2017. 塔里木北部新元古代裂谷盆地古地理格局与油气勘探潜力. 石油学报, 38(4): 375-385. [Wu L,Guan S W,Yang H J,Ren R,Zhu G Y,Jin J Q,Zhang C Y. 2017. The paleogeographic framework and hydrocarbon exploration potential of Neoproterozoic rift basin in northern Tarim basin. Acta Petrolei Sinica, 38(4): 375-385] [17] 熊小辉,肖加飞. 2011. 沉积环境的地球化学示踪. 地球与环境, 39(3): 405-414. [Xiong X H,Xiao J F. 2011. Geochemical indicators of sedimentary environments: a summary. Earth and Environment, 39(3): 405-414] [18] 严威,杨果,易艳,左小军,王孝明,娄洪,饶华文. 2019. 塔里木盆地柯坪地区上震旦统白云岩储层特征与成因. 石油学报, 40(3): 295-307, 321. [Yan W,Yang G,Yi Y,Zuo X J,Wang X M,Lou H,Rao H W. 2019. Characteristics and genesis of Upper Sinian dolomite reservoirs in Keping area,Tarim Basin. Acta Petrolei Sinica, 40(3): 295-307, 321] [19] 杨海军,邓兴梁,张银涛,谢舟,李勇,李世银,张海祖,朱永峰,陈永权. 2020. 塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义. 中国石油勘探, 25(3): 13-23. [Yang H J,Deng X L,Zhang Y T,Xie Z,Li Y,Li S Y,Zhang H Z,Zhu Y F,Chen Y Q. 2020. Great discovery and its significance of exploration for Ordovician ultra-deep fault-controlled carbonate reservoirs of Well Manshen 1 in Tarim Basin. China Petroleum Exploration, 25(3): 13-23] [20] 杨翰轩,胡安平,郑剑锋,梁峰,罗宪婴,俸月星,沈安江. 2020. 面扫描和定年技术在古老碳酸盐岩储集层研究中的应用: 以塔里木盆地西北部震旦系奇格布拉克组为例. 石油勘探与开发, 47(5): 935-946. [Yang H X,Hu A P,Zheng J F,Liang F,Luo X Y,Feng Y X,Sheng A J. 2020. Application of mapping and dating techniques in the study of ancient carbonate reservoirs: a case study of Sinian Qigebrak Formation in northwestern Tarim Basin,NW China. Petroleum Exploration and Development, 47(5): 935-946] [21] 杨云坤,石开波,刘波,秦善,王杰琼,张学丰. 2014. 塔里木盆地西北缘震旦纪构造沉积演化特征. 地质科学, 49(1): 19-29. [Yang Y K,Shi K B,Liu B,Qin S,Wang J Q,Zhang X F. 2014. Tectono-sedimentary evolution of the Sinian in the northwest Tarim Basin. Chinese Journal of Geology, 49(1): 19-29] [22] 张天付,黄理力,倪新锋,熊冉,杨果,孟广仁,郑剑锋,陈薇. 2020. 塔里木盆地柯坪地区下寒武统吾松格尔组岩性组合及其成因和勘探意义: 亚洲第一深井轮探1井突破的启示. 石油与天然气地质, 41(5): 928-940. [Zhang T F,Huang L L,Ni X F,Xiong R,Yang G,Meng G R,Zheng J F,Chen W. 2014. Lithological combination,genesis and exploration significance of the Lower Cambrian Wusonggeer Formation of Kalpin area in Tarim Basin: insight through the deepest Asian onshore well-Well Luntan 1. Oil & Gas Geology, 41(5): 928-940] [23] 赵文智,沈安江,郑剑锋,乔占峰,王小芳,陆俊明. 2014. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义. 中国科学: 地球科学, 44(9): 1925-1939. [Zhao W Z,Shen A J,Zheng J F,Qiao Z F,Wang X F,Lu J M. 2014. The porosity origin of dolostone reservoirs in the Tarim,Sichuan and Ordos basins and its implication to reservoir prediction. Science China Earth Sciences, 44(9): 1925-1939] [24] 赵文智,沈安江,乔占峰,潘立银,胡安平,张杰. 2018. 白云岩成因类型、识别特征及储集空间成因. 石油勘探与开发, 45(6): 923-935. [Zhao W Z,Shen A J,Qiao Z F,Pan L Y,Hu A P,Zhang J. 2018. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs. Petroleum Exploration and Development, 45(6): 923-935] [25] 郑剑锋,袁文芳,黄理力,潘文庆,乔占峰,杨果. 2019. 塔里木盆地肖尔布拉克露头区下寒武统肖尔布拉克组沉积相模式及其勘探意义. 古地理学报, 21(4): 589-602. [Zheng J F,Yuan W F,Huang L L,Pan W Q,Qiao Z F,Yang G. 2019. Sedimentary facies model and its exploration significance of the Lower Cambrian Xiaoerblak Formation in Xiaoerblak area,Tarim Basin. Journal of Palaeogeography(Chinese Edition), 21(4): 589-602] [26] 郑剑锋,黄理力,袁文芳,朱永进,乔占峰. 2020. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义. 天然气地球科学, 31(5): 698-709. [Zheng J F,Huang L L,Yuan W F,Zhu Y J,Qiao Z F. 2020. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area,Tarim Basin. Natural Gas Geoscience, 31(5): 698-709] [27] 钟福平,钟建华,由伟丰,寇卫锋,边强. 2011. 贺兰山汝箕沟三叠纪钙质结核特征及环境意义. 大庆石油学院学报, 35(1): 26-29+114-115. [Zhong F P,Zhong J H,You F W,Kou W F,Bian Q. 2011. Characteristics and environmental significance of the calcareous concretions in Rujigou of Helan Mountain. Journal of Daqing Petroleum Institute, 35(1): 26-29+114-115] [28] 周肖贝,李江海,傅臣建,李文山,王洪浩. 2012. 塔里木盆地北缘南华纪—寒武纪构造背景及构造-沉积事件探讨. 中国地质, 39(4): 900-911. [Zhou X B,Li J H,Fu C J,Li W S,Wang H H. 2012. A discussions on the Cryogenian-Cambrian tectonic-sedimentary event and tectonic setting of northern Tarim Basin. Geology in China, 39(4): 900-911] [29] 周肖贝,李江海,王洪浩,李文山,程雅琳. 2015. 塔里木盆地南华纪—震旦纪盆地类型及早期成盆构造背景. 地学前缘, 22(3): 290-298. [Zhou X B,Li J H,Wang H H,Li W S,Cheng Y L. 2015. The type of prototypic basin and tectonic setting of Tarim Basin formation from Nanhua to Sinian. Earth Science Frontiers, 22(3): 290-298] [30] 朱光有,曹颖辉,闫磊,杨海军,孙崇浩,张志遥,李婷婷,陈永权. 2018. 塔里木盆地8000 m以深超深层海相油气勘探潜力与方向. 天然气地球科学, 29(6): 755-772. [Zhu G Y,Cao Y H,Yan L,Yang H J,Sun C H,Zhang Z Y,Li T T,Chen Y Q. 2018. Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8000 meters in Tarim Basin. Natural Gas Geoscience, 29(6): 755-772] [31] Aitken J D. 1967. Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwest Alberta. Journal of Sedimentary Petrology, 37(4): 1163-1178. [32] Arthur M A,Sageman B B. 1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22(1): 499-551. [33] Balashov J A,Khitrov L M. 1961. Distribution of the rare earths in the waters of the Indian Ocean. Geochemistry International, 9: 877-890. [34] Craig H.1965. The measurement of oxygen isotope palaeotemperatures. In: Tongiori E(ed). Stable Isotopes in Oceanographic Studies and Palaeotemperatures. Pisa,Italy: Consiglio Nazionale delle Ricerche Laboratorio di Geologia Nucleare,161-182. [35] Halverson G P,Dud S F,Maloof A C,Bowring S A. 2007. Evolution of the87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography,Palaeoclimatology,Palaeoecology, 256(3-4): 103-129. [36] Jones B,Manning D. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111-129. [37] Kaufman A J,Knoll A H,Narbonne G M. 1997. Isotopes,ice ages and terminal Proterozoic earth history: An exemple from the Olenek Uplift,northeastern Sibéria. Precambrian Research, 73: 251-270. [38] Keith M H,Weber J N. 1964. Isotopic composition and environmental classification of selected limestones and fossils. Geochim Cosmochim Acta, 28: 1787-1816. [39] Li Z,Qiu N,Chang J,Yang X M. 2015. Precambrian evolution of the Tarim Block and its tectonic affinity to other major continental blocks in China: new clues from U-Pb geochronology and Lu-Hf isotopes of detrital zircons. Precambrian Research, 270(15): 1-21. [40] Nicholls G D. 1967. Trace elements in sediments: an assessment of their possible utility as depth indicators. Marine Geology, 5: 539-555. [41] Urey H C. 1948. Oxygen isotopes in natures and in the laboratory. Science, 108: 489-496. [42] Wu L,Guan S W,Ren R,Zhang C Y. 2017. Sedimentary evolution of Neoproterozoic rift basin in northern Tarim. Petroleum Research, 2(4): 315-323. [43] Xu B,Zou H,Chen Y,He J Y,Wang Y. 2013. The Sugetbrak basalts from northwestern Tarim Block of northwest China: geochronology,geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic. Precambrian Research, 236(5): 214-226.