Geochemical characteristics and its tectonic significance of the Early Paleozoic siliceous rocks in Hangwula area of northern Alxa,Inner Mongolia
Zheng Xiaoming1, 2, Yin Haiquan3, Gao Lei2, Wang Shengyu4, Wang Yankai5, Zhou Hongrui2, Zhang Weijie2
1 China Non-ferrous Metals Resource Geological Survey,Beijing 100012; 2 School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083; 3 First Crust Monitoring and Application Center,CEA,Tianjin 300180; 4 Beijing Institute of Geology,Beijing 100120; 5 Hebei Institute of Regional Geological and Mineral Resource Survey,Langfang 065000,Hebei;
Abstract:Hangwula area of the northern Alxa in Inner Mongolia,located on the southern margin of the middle Central Asian Orogenic Belt(CAOB)and dominated by the Siberian Plate in its north,the Tarim Plate in its west and the North China Plate in its south,is one of the most typical areas for researching tectonic evolution of the CAOB and the Paleo-Asian Ocean. In this article,geochemical characteristics of the Early Paleozoic siliceous rocks were mainly studied to re-establish the tectonic evolution of the northern Alxa in Early Paleozoic combining with the previous results. The Early Paleozoic siliceous rocks of the Xishuangyingshan Formation and the Bandingtaolegai Formation in the Hangwula area were identified to contain clay,terrigenous silt and radiolarians under the microscopic analysis,which reveals that these siliceous rocks were of the distinct sedimentary origin. However,these Early Paleozoic siliceous rocks showed poor uniformity on their geochemical characteristics: The discrimination diagrams of major elements like Fe,Mn,Al and the ratio analyses of rare earth elements(REEs)like Sc/Th,(La/Ce)n,and δCe indicate that the siliceous rocks belong to the stable continental margin deposits;but(La/Yb)n value reflects a pelagic sedimentary background. δEu value shows that the origin process of the siliceous rocks was without hydrothermal participation. The ratio analyses of trace elements like V/Y,Ti/V conform to the ocean ridge or the ocean basin setting,but the U/Th and Ba/Sr radios accord with the hydrothermal feature. REE distribution patterns of the Early Paleozoic siliceous rocks are relatively flat with positive europium anomaly but without steep right-dipping LREE-rich trend or left-dipping HREE-rich trend,suggesting that their generation cannot be linked to classic continental margin or ocean basin. Although the Lower Paleozoic sedimentary records of the Hangwula area were relatively scarce,in view of the complex tectonic evolution characteristics of the Upper Paleozoic and its palaeogeographical inheritance,and combined with the above geochemical characteristics of the siliceous rocks,it can be considered that the Hangwula area of northern Alxa was in an archipelagic ocean environment during the Early Paleozoic.
Zheng Xiaoming,Yin Haiquan,Gao Lei et al. Geochemical characteristics and its tectonic significance of the Early Paleozoic siliceous rocks in Hangwula area of northern Alxa,Inner Mongolia[J]. JOPC, 2017, 19(3): 491-502.
[1] 杜远生,朱杰,顾松竹. 2006. 北祁连肃南一带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义. 地球科学(中国地质大学学报),31(1): 101-109. [Du Y S,Zhu J,Gu S Z. 2006. Sedimentary geochemistry and tectonic significance of Ordovician cherts in Sunan,North Qilian Mountains. Earth Sciences-Journal of China University of Geosciences,31(1): 101-109] [2] 杜远生,朱杰,顾松竹,徐亚军,杨江海. 2007. 北祁连造山带寒武系—奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示. 中国科学(D辑),37(10): 1314-1329. [Du Y S,Zhu J,Gu S Z,Xu Y J,Yang J H. 2007. Sedimentray geochemistry and tectonic significance of Cambrian to Ordovician cherts in North Qilian orogenic belt. Science in China(Series D),37(10): 1314-1329] [3] 胡丽沙,徐亚军,杜远生,黄宏伟,徐旺春,邝国敦. 2014. 广西东南部钦防海槽晚古生代硅质岩地球化学特征及其地质意义. 古地理学报,16(1): 77-87. [Hu L S,Xu Y J,Du Y S,Huang H W,Xu W C,Kuang G D. 2014. Geochemical characteristics and its geological significance of the Late Paleozoic siliceous rocks in Qinfang Through,southeastern Guangxi. Journal of Palaeogeography(Chinese Edition),16(1): 77-87] [4] 李红中,周永章,张连昌,何俊国,杨志军,梁锦,周留煜,瓦西拉里. 2012. 华北克拉通南部元古代熊耳群硅质岩地球化学及形成机制研究. 岩石学报,28(11): 3679-3691. [Li H Z,Zhou Y Z,Zhang L C,He J G,Yang Z J,Liang J,Zhou L Y,Waxilali. 2012. Study on geochemistry and development mechanism of Proterozoic chert from Xiong'er Group in southern region of North China Craton. Acta Petrologica Sinica,28(11): 3679-3691] [5] 李俊建,张峰,任军平,唐文龙,付超,陈正,李承东,赵丽君,冯晓曦,党智财,赵泽霖,刘晓雪,Tomurtogoo O,Delgersaikhan A,Enkhbat T,Altankhundaga B,Dorjsuren B,Batbayar J. 2015. 中蒙边界地区构造单元划分. 地质通报,34(4): 636-662. [Li J J,Zhang F,Ren J P,Tang W L,Fu C,Chen Z,Li C D,Zhao L J,Feng X X,Dang Z C,Zhao Z L,Liu X X,Tomurtogoo O,Delgersaikhan A,Enkhbat T,Altankhundaga B,Dorjsuren B,Batbayar J. 2015. Tectonic units in China-Mongolia border area and their fundamental characteristics. Geological Bulletin of China,34(4): 636-662] [6] 潘桂棠,肖庆辉,陆松年,邓晋福,冯益民,张克信,张智勇,王方国,邢光福,郝国杰,冯艳芳. 2009. 中国大地构造单元划分. 中国地质,36(1): 1-28. [Pan G T,Xiao Q H,Lu S N,Deng J F,Feng Y M,Zhang K X,Zhang Z Y,Wang F G,Xing G F,Hao G J,Feng Y F. 2009. Subdivision of tectonic units in China. Geology in China,36(1): 1-28] [7] 邵积东,王惠,张梅,赵文涛. 2011. 内蒙古大地构造单元划分及其地质特征. 西部资源,(2): 51-56. [Shao J D,Wang H,Zhang M,Zhao W T. 2011. The geotectonic division and characteristics of Inner Mongolia. Western Resources,(2): 51-56] [8] 万天丰. 2006. 中国大陆早古生代构造演化. 地学前缘,13(6): 30-42. [Wan T F. 2006. Tectonic evolution in the Chinese continent from Middle Cambrian to Devonian. Earth Science Frontiers,13(6): 30-42] [9] 王廷印,王士政,王金荣. 1994. 阿拉善地区古生代陆壳的形成和演化. 甘肃兰州: 兰州大学出版社,1-198. [Wang T Y,Wang S Z,Wang J R. 1994. The Formation and Evolution of Paleozoic Continental Crust in Alxa Area. Gansu Lanzhou: Lanzhou University Press,1-198] [10] 王行军. 2012. 内蒙古阿拉善地区蛇绿岩的地球化学特征及其构造意义. 中国地质大学(北京)博士论文. [Wang X J. 2012. The geochemical characters and its tectonic implications of ophiolites in Alxa area,Inner Mongolia. Doctoral Dissertation of China University of Geosciences(Beijing)] [11] 吴泰然,何国琦. 1993. 内蒙古阿拉善地块北缘的构造单元划分及各个单元的基本特征. 地质学报,67(2): 97-108. [Wu T R,He G Q. 1993. Tectonic units and their fundamental characteristics on the northern margin of the Alxa Block. Acta Geologica Sinica,67(2): 97-108] [12] 徐备,陈斌. 1997. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化. 中国科学(D辑),27(3): 227-232. [Xu B,Chen B. 1997. The structure and evolution of the Paleozoic orogenic between North China plate and Siberian plate in the northern Inner Mongolia. Science in China(Series D),27(3): 227-232] [13] 徐东卓,张维杰,周海涛,孙启凯. 2014. 内蒙古阿拉善地块中北部地区辉长岩岩体特征、锆石定年及其构造意义. 地质通报,33(5): 661-671. [Xu D Z,Zhang W J,Zhou H T,Sun Q K. 2014. Characteristics,zircon dating and tectonic significance of the gabbros along the north-central segments of the Alxa Block,Inner Mongolia. Geological Bulletin of China,33(5): 661-671] [14] 尹海权,周洪瑞,程瑞,张维杰,郑小明,杨立业,李杰,王晟宇. 2015. 内蒙古阿拉善北部杭乌拉地区圆包山组时代、沉积特征及大地构造意义. 沉积学报,33(4): 665-678. [Yin H Q,Zhou H R,Cheng R,Zhang W J,Zheng X M,Yang L Y,Li J,Wang S Y. 2015. The age,sedimentary characteristics and tectonic significance on the Yuanbaoshan Formation in the southern margin of the Siberian Plate,North of Alxa,Inner Mongolia. Acta Sedimentologica Sinica,33(4): 665-678] [15] 郑荣国,吴泰然,张文,冯继承,徐操,孟庆鹏,张昭昱. 2013. 阿拉善地块北缘雅干花岗岩体地球化学、地质年代学及其对区域构造演化制约. 岩石学报,29(8): 2665-2675. [Zheng R G,Wu T R,Zhang W,Feng J C,Xu C,Meng Q P,Zhang Z Y. 2013. Geochronology and geochemistry of the Yagan granite in the northern margin of the Alxa block: Constraints on the tectonic evolution of the southern Altaids. Acta Petrologica Sinica,29(8): 2665-2675] [16] 朱杰,杜远生. 2007. 北祁连造山带老虎山奥陶系硅质岩地球化学特征及古地理意义. 古地理学报,9(1): 69-76. [Zhu J,Du Y S. 2007. Geochemistry characteristics and palaeogeographic significance of the Ordovician siliceous rocks from Laohushan area,North Qilian orogenic belt. Journal of Palaeogeography(Chinese Edition),9(1): 69-76] [17] 左国朝,李绍雄. 2011. 塔里木盆地东北缘早古生代构造格局及演化. 中国地质,38(4): 945-960. [Zuo G C,Li S X. 2011. Early Paleozoic tectonic framework and evolution in the northeast margin of Tarim Basin. Geology in China,38(4): 945-960] [18] 左国朝,刘义科,刘春燕. 2003. 甘新蒙北山地区构造格局及演化. 甘肃地质学报,12(1): 1-15. [Zuo G C,Liu Y K,Liu C Y. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province,Xinjiang Autonomous Region and Inner Mongolia Autonomous Region. Acta Geologica Gansu,12(1): 1-15] [19] Adachi M,Yamamoto K,Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific:Their geological significance as indication of ocean ridge activity. Sedimentary Geology,47(1-2): 125-148. [20] Armstrong H A,Owen A W,Floyd J D. 1999. Rare earth geochemistry of Arenig cherts from the Ballantrae ophiolite and Leadhills Imbricate Zone,southern Scotland: Implications for origin and significance to the Caledonian Orogeny. Journal of the Geological Society,156(3): 549-560. [21] Baldwin G J,Thurston P C,Kamber B S. 2011. High-precision rare earth element,nickel,and chromium chemistry of chert microbands prescreened with insitu analysis. Chemical Geology,285(1-4): 133-143. [22] Baltuck M. 1982. Provenance and distribution of tethyan pelagic and hemipelagic siliceous sediments,Pindos Mountains,Greece. Sedimentary Geology,31(1): 63-88. [23] Badarch G,Cunningham W D,Windley B F. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of central Asia. Journal of Asian Earth Sciences,21: 87-110. [24] Blight J H S,Crowley Q G,Petterson M G,Cunningham D. 2002. Granites of the Southern Mongolia Carboniferous Arc: New geochronological and geochemical constraints. Lithos,116: 35-42. [25] Blight J H S,Cunningham W D,Petterson M G. 2008. Crustal evolution of the Saykhandulaan Inlier,Mongolia: Implications for Paleozoic arc magmatism,polyphase deformation and terrane accretion in the Sourtheast Gobi Mineral Belt. Journal of Asian Earth Sciences,32: 142-164. [26] Girty G H,Ridge D L,Knaack C,Johnson D,AI-Riyami R K. 1996. Provenance and depositional setting of Paleozoic chert and argillite,Sierra Nevada,California. Journal of Sedimentary Research,66(1): 107-118. [27] Glorie S,Grave J D,Buslov M M,Zhimulev F I,Izmer A,Vandoorne W,Ryabinin A,Haute P V D,Vanhaecke F,Elburg M. 2011. Formation and Paleozoic evolution of the Gorny-Altai—Altai-Mongolia suture zone(South Siberia): Zircon U/Pb constraints on the igneous record. Gondwana Research,20: 465-484. [28] Helo C,Hegner E,Kröner A,Badarch G,Tomurtogoo O,Windley B F,Dulski P. 2006. Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on arc environments and crustal growth. Chemical Geology,277: 236-257. [29] Jahn B M,Wu F Y,Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans Royal Society Edinburgh: Earte Science,91: 181-193. [30] Kröner A,Kovach V,Belousova E,Hegner E,Armstrong R,Dolgopolova A,Seltmann R,Alexeiev D V,Hoffmann J E,Wong J,Sun M,Cai K,Wang T,Tong Y,Wilde S A,Degtyarev K E,Rytsk E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research,25: 103-125. [31] Marin-Carbonne J,Chaussidon M,Boiron M C,Robert F. 2011. Acombined in situ oxygen,silicon isotopic and fluid inclusion study of a chert sample from Onverwacht Group(3.35,Ga,South Africa): New constraints on fluid circulation. Chemical Geology,286(3-4): 59-71. [32] Marin-Carbonne J,Chaussidon M,Robert F. 2012. Micrometer-scale chemical and isotopic criteria(O and Si)on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions. Geochimica et Cosmochimica Acta,92: 129-147. [33] Michard A,de Albarede G,Michard G,Minster J F,Charlou J L. 1983. Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermall vent field(138°W). Nature,303(5920): 795-797. [34] Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology,90(3-4): 213-232. [35] Murray R W,Buchholtz T,Brink M R. 1990. Rare earth elements as indicators of different marine depositional environments of chert and shale. Geology,18: 268-271. [36] Murray R W,Buchholtz T,Brink M R. 1991. Rare earth,major and trace element in chert from Franciscan complex and Monterey Group: Assessing REE source to fine-grained marine sediments. Geochim. Cosmochim. Acta,55: 1875-1895. [37] Murray R W,Buchholtz T,Brink M R. 1992. Rare earth and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis. Geochim. Cosmochim. Acta,56: 2657-2671. [38] Peter J M,Scott S D. 1988. Mineralogy,composition,and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the Southern Trough of Guaymas Basin,Gulf of California. Canadian Mineralogist,26: 567-587. [39] Sugisaki R,Kinoshita T. 1982. Major element chemistry of the sediments on the central Pacific Transect,Wake to Tahiti,GH80-1cruise. In: Mizuno A(ed). Geology Survey Japan Cruise Report,18: 293-312. [40] Windley B F,Alexeiev D,Xiao W J,Kröner A,Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society,London,164: 31-47. [41] Xiao W J,Santosh M. 2014. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Research, 25: 1429-1444. [42] Zheng R G,Wu T R,Zhang W,Xu C,Meng Q P,Zhang Z Y. 2014. Late Paleozoic subduction system in the northern margin of the Alxa block,Altaids: Geochronological and geochemical evidences from ophiolites. Gondwana Research,25: 842-858.