Sedimentary environment and sea level change of the subsalt interval of Member 5 of Ordovician Majiagou Formation in central Ordos Basin
Xi Shengli1, Xiong Ying2, 3, Liu Xianyang1, Lei Jingchao1, Liu Mingjie2, 3, Liu Ling2, 3, Liu Yun2, 3, Wen Huibo4, Tan Xiucheng2, 3
1 Exploration Department of PetroChina Changqing Oilfield Company,Xi’an 710018,Shaanxi; 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,Sichuan; 3 PetroChina Deposition and Accumulation Department of Key Laboratory of Carbonate Reservoirs,Southwest Petroleum University,Chengdu 610500,Sichuan; 4 Changqing Well Cementation Company, CNPC Chuanqing Drilling Engineering Company, Xi’an 710018,Shaanxi
Abstract:The Ordovician Majiagou Formation in the central Ordos Basin is rich in gas resources. However,previous studies generally focused on the palaeo-weathered crust reservoirs in the uppermost part of the Majiagou Formation. Based on cores,thin sections and cathodeluminescence data,we studied the subsalt interval of Member 5 of the Majiagou Formation in the central Ordos Basin. The carbonate-evaporite sediments of the subsalt interval can be divided into ten rock types. On the basis of the macro- and micro-features of all the rocks and their vertical and horizontal combination and distribution,five types of sedimentary environment were recognized in the study area,namely restricted-evaporative lagoon,bank,shallow marine,microbial mound and platform flat. The difference of rock types in each submember and their statistics indicate that the subsalt interval is characterized by cyclical deposition of carbonates and evaporites as well as eustatic sea level change,and each submember represents a transgression or regression. Consequently,the Ma56,Ma58 and Ma510 submembers are regressive sediments in restricted-evaporative lagoon,mainly consisting of laminated dolomitic gypsum and micritic dolostone,which reflects a restricted,low-energy and high salinity environment. The Ma57 and Ma59 submembers are transgressive sediments of bank and microbial mound,which usually make up a complete descending meter-scale sedimentary cycle in vertical together with the adjacent restricted-evaporative lagoon and platform flat,indicating good water circulation and a relatively high-energy open environment.
Xi Shengli,Xiong Ying,Liu Xianyang et al. Sedimentary environment and sea level change of the subsalt interval of Member 5 of Ordovician Majiagou Formation in central Ordos Basin[J]. JOPC, 2017, 19(5): 773-790.
[1] 方少仙,何江,侯方浩,杨西燕,乔琳,傅锁堂,姚泾利,吴正,阎荣辉,徐黎明. 2009. 鄂尔多斯盆地中部气田区中奥陶统马家沟组马五5—马五1亚段储集层孔隙类型和演化. 岩石学报,25(10): 2425-2441. [Fang S X,He J,Hou F H,Yang X Y,Qiao L,Fu S T,Yao J L,Wu Z,Yan R H,Xu L M. 2009. Reservoirs pore spacetypes and evolution in M55 to M51 submembers of Majiagou Formation of Middle Ordovician in central gasfield area of Ordos Basin. Acta Petrologica Sinica,25(10): 2425-2441] [2] 冯增昭. 1982. 碳酸盐岩分类. 石油学报,(1): 11-18. [Feng Z Z. 1982. Classification of carbonate rocks. Acta Petrolei Sinica,(1): 11-18] [3] 冯增昭,鲍志东. 1999. 鄂尔多斯奥陶纪马家沟期岩相古地理. 沉积学报,17(1): 1-8. [Feng Z Z,Bao Z D. 1999. Lithofacies paleogeography of Majiagou age of Ordovician in Ordos Basin. Acta Sedimentologica Sinica,17(1): 1-8] [4] 何江,方少仙,侯方浩,阎荣辉,赵忠军,姚坚,唐秀军,吴国荣. 2013. 风化壳古岩溶垂向分带与储集层评价预测: 以鄂尔多斯盆地中部气田区马家沟组马五5—马五1亚段为例. 石油勘探与开发,40(5): 534-542. [He J,Fang S X,Hou F H,Yan R H,Zhao Z J,Yao J,Tang X J,Wu G R. 2013. Vertical zonation of weathered crust ancient karst and the reservoir evaluation and prediction: A case study of M55-M51 sub-members of Majiagou Formation in gas fields,central Ordos Basin,NW China. Petroleum Exploration and Development,40(5): 534-542] [5] 何江,方少仙,侯方浩,杨西燕. 2009. 鄂尔多斯盆地中部气田中奥陶统马家沟组岩溶型储集层特征. 石油与天然气地质,30(3): 350-356. [He J,Fang S X,Hou F H,Yang X Y. 2009. Characteristics of karst reservoirs of Majiagou Formation(Middle Ordovician)in central gasfield area,Ordos Basin. Oil & Gas Geology,30(3): 350-356] [6] 侯方浩,方少仙,赵敬松,董兆雄,李凌. 2002. 鄂尔多斯盆地中奥陶统马家沟组沉积环境模式. 海相油气地质,7(1): 38-46,5. [Hou F H,Fang S X,Zhao J S,Dong Z X,Li L. 2002. Depositional environment model of Middle Ordovician Majiagou Formation in Ordos Basin. Marine Origin Petroleum Geology,7(1): 38-46,5] [7] 胡彬,孔凡晶,张永生,郑绵平,陈靖. 2014. 陕北盐盆马家沟组五段六亚段沉积期的古气候信息: 来自石盐包裹体的证据. 沉积学报,32(3): 510-517. [Hu B,Kong F J,Zhang Y S,Zhen M P,Chen J. 2014. Paleoclimatic Information of O2 deposition stage in Northern Shaanxi Salt Basin: Evidence from fluid inclusion in halite. Acta Sedimentologica Sinica,32(3): 510-517] [8] 胡文瑄,朱井泉,王小林,由雪莲,何凯. 2014. 塔里木盆地柯坪地区寒武系微生物白云岩特征、成因及意义. 石油与天然气地质,35(4): 860-869. [Hu W X,Zhu J Q,Wang X L,You X L,He K. 2014. Characteristics,origin and geological implications of the Cambrian microbial dolomite in Keping area,Tarim Basin. Oil & Gas Geology,35(4): 860-869] [9] 胡志水,赵永胜. 1993. 重庆中梁山三叠系飞仙关组三段风暴沉积. 沉积学报,11(2): 84-90. [Hu Z S,Zhao Y S. 1993. Storm deposits in Member Ⅲ of Feixianguan Formation,Triassic series in Zhongliang Mountain,Chongqing. Acta Sedimentologica Sinica,11(2): 84-90] [10] 黄正良,刘燕,武春英,王前平,任军峰. 2014. 鄂尔多斯盆地奥陶系马家沟组五段中组合中下段成藏特征. 海相油气地质,19(3): 57-65. [Huang Z L,Liu Y,Wu C Y,Wang Q P,Ren J F. 2014. Characteristics of hydrocarbon accumulation in the middle and lower sections of middle assemblages of lower Ordovician Majiagou Member-5,Ordos Basin. Marine Origin Petroleum Geology,19(3): 57-65] [11] 蒋少涌,丁清峰,杨水源,朱志勇,孙明志,孙岩,边立曾. 2011. 长江中下游成矿带铜多金属矿床中微生物丘的发现及其意义: 以武山和冬瓜山铜矿为例. 地质学报,85(5): 744-756. [Jiang S Y,Ding Q F,Yang S Y,Zhu Z Y,Sun M Z,Sun Y,Bian L Z. 2011. Discovery and significance of carbonate mud mounds from Cu-polymetallic deposits in the Middle and Lower Yangtze Metallogenic belt: Examples from the Wushan and Dongguashan deposits. Acta Geologica Sinica,85(5): 744-756] [12] 李凌,谭秀成,曾伟,周涛,杨雨,洪海涛,罗冰,边立曾. 2013. 四川盆地震旦系灯影组微生物丘发育特征及储集意义. 石油勘探与开发,40(6): 666-673. [Li L,Tan X C,Zeng W,Zhou T,Yang Y,Hong H T,Luo B,Bian L Z.2013. Development and reservoir significance of mud mounds in Sinian Dengying Formation,Sichuan Basin. Petroleum Exploration and Development,40(6): 666-673] [13] 李凌,谭秀成,邹春,丁熊,杨光,应丹琳. 2012. 四川盆地雷口坡组膏盐岩成因及膏盐盆迁移演化与构造意义. 地质学报,86(2): 316-324. [Li L,Tan X C,Zhou C,Ding X,Yang G,Ying D L. 2012. Origin of the Leikoupo Formation gypsun-salt and migration evolution of the gypsun salt pot in the Sichuan Basin,and their structural significance. Acta Geologica Sinica,86(2): 316-324] [14] 李文厚,陈强,李智超,王若谷,王妍,马瑶. 2012. 鄂尔多斯地区早古生代岩相古地理. 古地理学报,14(1): 85-100. [Li W H,Chen Q,Li Z C,Wang R G,Wang Y,Ma Y. 2012. Lithofacies palaeogeography of the Early Paleozoic in Ordos area. Journal of Palaeogeography(Chinese Edition),14(1): 85-100] [15] 林耀庭,陈绍兰. 2008. 论四川盆地下、中三叠统蒸发岩的生成模式、成盐机理及找钾展望. 盐湖研究,16(3): 1-10. [Lin Y T,Chen S L. 2008. Discussion on the evaporite generating modes,saltforming mechanism and potassium-hunting prospect of Lower-Middle Triassic in Sichuan Basin. Journal of Salt Lake Research,16(3): 1-10] [16] 刘新社,熊鹰,文彩霞,李凌,王飞燕,何为,杨清宇,肖笛,谭秀成. 2016. 鄂尔多斯盆地东北部马五1-2亚段岩石类型及沉积环境. 沉积学报,34(5): 79-90. [Liu X S,Xiong Y,Wen C X,Li L,Wang F Y,He W,Yang Q Y,Xiao D,Tan X C. Rock types and sedimentary environment of the Ma51~2 carbonates in northestern Ordos Basin. Acta Sedimentologica Sinica,34(5): 79-90] [17] 刘育燕,杨巍然,森永速男,足立泰久,杨志华,安川克已. 1993. 华北、秦岭及扬子陆块的若干古地磁研究结果. 地球科学: 中国地质大学学报,18(5): 635-641. [Liu Y Y,Yang W R,Hayao M,Yasuhisa A,Yang Z H,Katsumi Y. 1993. Some paleomagnetic results on North China Qingling and Yangtze blocks. Earth Science-Journal of China University of Geosciences,18(5): 635-641] [18] 苗忠英,陈践发,张晨,史基安,邵毅,战沙. 2011. 鄂尔多斯盆地东部奥陶系盐下天然气成藏条件. 天然气工业,31(2): 39-42. [Miao Z Y,Chen J F,Zhang C,Shi J A,Shao Y,Zhan S. 2011. Gas pooling conditions in the Ordovician subsalt layers,eastern Ordos Basin. Natural Gas Industry,31(2): 39-42] [19] 沈骋,谭秀成,周博,李凌,曾伟,陈虹宇,苏成鹏,施开兰. 2016. 川北旺苍唐家河剖面仙女洞组微生物丘沉积特征及造丘环境分析. 地质论评,62(1): 202-214. [Shen C,Tan X C,Zhou B,Li L,Zeng W,Chen H Y,Su C P,Shi K L. 2016. Construction of mud mounds and their forming models of Xiannudong Formation in Tangjiahe Section of Wangcang,North Sichuan. Geological Review,62(1): 202-214] [20] 史基安,邵毅,张顺存,付翠琴,白海峰,马占龙,吴志雄. 2009. 鄂尔多斯盆地东部地区奥陶系马家沟组沉积环境与岩相古地理研究. 天然气地球科学,20(3): 316-324. [Shi J A,Shao Y,Zhang S C,Fu C Q,Bai H F,Ma Z L,Wu Z X. 2009. Lithofacies paleogeography and sedimentary environment in Ordovician Majiagou Formation,eastern Ordos Basin. Natural Gas Geoscience,20(3): 316-324] [21] 宋金民,罗平,杨式升,翟秀芬,周刚,陆朋朋. 2012. 塔里木盆地苏盖特布拉克地区下寒武统肖尔布拉克组碳酸盐岩微生物建造特征. 古地理学报,14(3): 341-354. [Song J M,Luo P,Yang S S,Zhai X F,Zhou G,Lu P P. 2012. Carbonate rock microbial construction of the Lower Cambrian Xiaoerbulake Formation in Sugaitblak area,Tarim Basin. Journal of Palaeogeography(Chinese Edition),14(3): 341-354] [22] 吴东旭,吴兴宁,曹荣荣,于洲. 2014. 鄂尔多斯盆地奥陶系古隆起东侧马家沟组中组合储集层特征及成藏演化. 海相油气地质,19(4): 38-44. [Wu D X,Wu X N,Cao R R,Yu Z. 2014. Reservoir characteristics and evolution of Majiagou Middle assemblage on east side of Ordovician central palaouplift, Ordos Basin. Marine Origin Petroleum Geology,19(4): 38-44] [23] 吴光红,张宝民,边立曾,刘静江. 1999. 塔中地区中晚奥陶世微生物丘初步研究. 沉积学报,17(2): 198-203. [Wu G H,Zhang B M,Bian L Z,Liu J J. 1999. Preliminary study of carbonate mud-mounds,Middle-Late Ordovician,Tazhong area. Acta Sedimentologica Sinica,17(2): 198-202] [24] 王鸿祯,徐成彦,周正国. 1982. 东秦岭古海域两侧大陆边缘区的构造发展. 地质学报,56(3): 270-280. [Wang H Z,Xu C Y,Zhou Z G. 1982. Tectonic development of the continental margins on both sides of the palaeo-QinLin marine realm. Acta Geologica Sinica,56(3): 270-280] [25] Wilson J L. 1981. 地质历史中的碳酸盐相. 冯增昭等,译. 北京: 地质出版社. [Wilson J L. 1981. Carbonate Phase in the Geological History. Translated by Feng Zengzhao, et al. Beijing: Geological Publishing House] [26] 夏明军,郑聪斌,戴金星,邹才能,汪泽成,王兰萍. 2007. 鄂尔多斯盆地东部奥陶系盐下储层及成藏条件分析. 天然气地球科学,18(2): 204-208. [Xia M J,Zheng C B,Dai J X,Zhou C N,Wang Z C,Wang L P. 2007. Ordovician under-salt reservoirs and forming conditions of gas pools in eastern Ordos Basin. Natural Gas Geoscience,18(2): 204-208] [27] 谢锦龙,吴兴宁,孙六一,于洲,王少依. 2013. 鄂尔多斯盆地奥陶系马家沟组五段岩相古地理及有利区带预测. 海相油气地质,18(4): 23-32. [Xie J L,Wu X N,Sun L Y,Yu Z,Wang S Y. 2013. Lithofacies palaeogeography and potential zone prediction of Ordovician Majiagou Member-5 in Ordos Basin. Marine Origin Petroleum Geology,18(4): 23-32] [28] 熊鹰,李凌,文彩霞,侯云东,肖笛,钟原,聂万才,曹剑,谭秀成. 2016. 鄂尔多斯盆地东北部奥陶系马五1+2储集层特征及成因. 石油与天然气地质,37(5): 691-701. [Xiong Y,Li L,Wen C X,Hou Y D,Xiao D,Zhong Y,Nie W C,Cao J,Tan X C. 2016. Characteristics and genesis of Ordovician Ma51+2 sub-member reservoir in northeastern Ordos Basin. Oil & Gas Geology,37(5): 691-701] [29] 杨华,包洪平,马占荣. 2014. 侧向供烃成藏: 鄂尔多斯盆地奥陶系膏盐岩下天然气成藏新认识. 天然气工业,34(4): 19-26. [Yang H,Bao H P,Ma Z R. 2014. Reservoir-forming by lateral supply of hydrocarbon: A new understanding of the formation of Ordovician gas reservoirs under gypsolyte in the Ordos Basin. Natural Gas Industry,34(4): 19-26] [30] 姚泾利,包洪平,任军峰,孙六一,马占荣. 2015. 鄂尔多斯盆地奥陶系盐下天然气勘探. 中国石油勘探,20(3): 1-12. [Yao J L,Bao H P,Ren J F,Sun L Y,Ma Z R. 2015. Exploration of Ordovician subsalt natural gas reservoirs in Ordos Basin. China Petroleum Exploration,20(3): 1-12] [31] 张吉森,曾少华,黄建松,马振芳,王泽中. 1991. 鄂尔多斯东部地区岩盐的发现、成因及其意义. 沉积学报,(2): 34-43. [Zhang J S,Zeng S H,Huang J S,Ma Z F,Wang Z Z.1991. The occurrence and significance of halite in eastern Ordos. Acta Sedimentologica Sinica,(2): 34-43] [32] 张永生,邢恩袁,王卓卓,郑绵平,施立志,苏奎,桂宝玲,吴素娟,蒋苏扬,朱常伟. 2015. 鄂尔多斯盆地奥陶纪马家沟期岩相古地理演化与成钾意义. 地质学报,89(11): 1921-1935. [Zhang Y S,Xing E Y,Wang Z Z,Zhen M P,Shi L Z,Su K,Gui B L,Wu S J,Jiang S Y,Zhu C W. 2015. Evolution of lithofacies paleogeography in the Ordos Basin and its implication of potash formation. Acta Geologica Sinica,89(11): 1921-1935] [33] 周进高,张帆,郭庆新,邓红婴,辛勇光. 2011. 鄂尔多斯盆地下奥陶统马家沟组障壁潟湖沉积相模式及有利储集层分布规律. 沉积学报,29(1): 64-71. [Zhou J G,Zhang F,Guo Q X,Deng H Y,Xin Y G. 2011. Barrier-lagoon sedimentary model and reservoir distribution regularity of Lower-Ordovician Majiagou Formation in Ordos Basin. Acta Sedimentologica Sinica,29(1): 64-71] [34] Andres M S,Reid R P. 2006. Growth morphologies of modern marine stromatolites:A case study from Highborne Cay,Bahamas. Sedimentary Geology,185(3-4): 319-328. [35] Burne R V,Moore L S. 1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios,2: 241-254. [36] Dupraz C,Visscher P T. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology,13(9): 429-438. [37] Dupraz C,Reid R P,Braissant O,Decho A W,Norman R S,Visscher P T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews,96: 141-162. [38] Flügel E. 2004. Microfacies of Carbonate Rocks. New York: Springer-Verlag. [39] Feng Z Z,Zhang Y S,Jin Z K. 1998. Type,origin,and reservoir characteristics of dolostones of the Ordovician Majiagou Group,Ordos,North China Platform. Sedimentary Geology,118(s1-4): 127-140. [40] He X Y,Shou J F,Shen A J,Wu X N,Wang Y S,Hu Y Y,Zhu Y,Wei D X. 2014. Geochemical characteristics and origin of dolomite: A case study from the middle assemblage of Ordovician Majiagou Formation Member 5 of the west of Jingbian Gas Field,Ordos Basin,North China. Petroleum Exploration & Development,41(3): 417-427. [41] Hips K,Haas J,Poros Z,Kele S,Budai T. 2015. Dolomitization of Triassic microbial mat deposits(Hungary): Origin of microcrystalline dolomite. Sedimentary Geology,318: 113-129. [42] Jahnert R J,Collins L B. 2011. Significance of subtidal microbial deposits in Shark Bay,Australia. Marine Geology,286(1-4): 106-111. [43] Jonkers H M,Ludwig R,Wit R D,Pringault O,Muyzer G,Niemann H,Finke N,Beer D D. 2003. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana(NE Spain). Fems Microbiology Ecology,44(2): 175-189. [44] Kromkamp J C,Perkins R,Dijkman N,Consalvey M,Andres M,Reid R P. 2007. Resistance to burial of cyanobacteria in stromatolites. Aquatic Microbial Ecology,48(2): 123-130. [45] Kennard J M,James N P. 1986. Thrombolites and stromatolites: Two distinct types of microbial structures. Palaios,1: 492-503. [46] Last F M,Last W M,Halden N M. 2010. Carbonate microbialites and hardgrounds from Manito Lake,an alkaline,hypersaline lake in the northern Great Plains of Canada. Sedimentary Geology,225(1-2): 34-49. [47] Maliński E,Gasiewicz A,Witkowski A,Szafranek J,Pihlaja K,Oksman P,Wiinamaki K. 2009. Biomarker features of sabkha-associated microbialites from the Zechstein Platy Dolomite(Upper Permian)of northern Poland. Palaeogeography, Palaeoclimatology, Palaeoecology,273(1-2): 92-101. [48] Mancini E A,Llins J C,Parcell W C,Aurell M,Bdenas B,Leinfelder R R,Benson D J. 2004. Upper Jurassic thrombolite reservoir play,northeastern Gulf of Mexico. AAPG Bulletin,88(11): 1573-1602. [49] Mazzullo S J. 2000. Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research,70(1): 10-23. [50] Perri E,Tucker M. 2007. Bacterial fossils and microbial dolomite in Triassic stromatolites. Geology,35(3): 207-210. [51] Perkins R,Kromkamp J C,Reid R P. 2007. Importance of light and oxygen for photochemical reactivation in photosynthetic stromatolite communities after natural sand burial. Marine Ecology Progress,349(1): 23-32. [52] Riding R.1991. Calcareous Algae and Stromatolites. Berlin: Springer-Verlag. [53] Tan X C,Li L,Liu H,Cao J,Wu X Q,Zhou S Y,Shi X W. 2014. Mega-shoaling in carbonate platform of the Middle Triassic Leikoupo Formation,Sichuan Basin,southwest China.Science China: Earth Sciences,44(3): 465-479. [54] Wolicka D,Borkowski A. 2011. Precipitation of CaCO3,Under Sulphate-Reduction Conditions. In:Advances in Stromatolite Geobiology. Berlin:Springer. [55] You X L,Sun S,Zhu J Q. 2014. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin,Northwest China. Science China: Earth Sciences,44(8): 1777-1790.