Sedimentary characteristics and model of lacustrine gravity flow channels: a case study of the Triassic Yanchang Formation of Yaoqu railway-bridge section in Ordos Basin
Tian Rong-Heng1,2, Xian Ben-Zhong1,2, Chao Chu-Zhi2, Liu Jian-Ping3,4,5, Zhang Guo-Dong6, Wang Jun-Hui1,2, Chen Peng1,2
1 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3 Guangzhou Marine Geological Survey,Ministry of Natural Resources,Guangzhou 510760,China; 4 MNR Key Laboratory of Marine Mineral Resources,Guangzhou Marine Geological Survey,Guangzhou 510760,China; 5 School of Marine Sciences,Sun Yat-sen University,Guangdong Zhuhai 519000,China; 6 801 Institute of Hydrogeology and Engineering Geology,Shandong Provincial Bureau of Geology & Mineral Resources,Jinan 250014,China;
Abstract:The classification of lacustrine deep-water gravity flow channels and the sedimentary model are the key controls on hydrocarbon exploration and development. In this paper,depositional characteristics,sedimentary processes and sedimentary model are studied using section measurement of the Triassic Yanchang Formation of Yaoqu railway-bridge outcrop,morphological parameter statistics for single channel,lithofacies and grain-size analysis. This study shows that: (1)There are at least four sets of gravity flow composite channels,which were mainly triggered by flood events. According to the morphological characteristics,lithofacies composition of single channel,composite channels can be divided into depositional channels and transitional channels. (2)The two composite channels in the lower part of the section belong to depositional type with suspended load lithofacies association including massive clean fine sandstone,thin layered mudstone and the Bouma facies sequence. Besides,the two channels in the upper part of the studied section belong to transitional channel with mixed lithofacies of bed load and suspended load,which is characterized by vertical lithofacies association of cross-bedding fine sandstone or fine sandstone with imbricated mud clasts,massive fine sandstone containing ripped mud clasts,parallel bedding coarse siltstone and thin mudstone facies. (3)A semi-quantitative sedimentary model of transitional and depositional gravity channel is proposed by analyzing size and architecture of the single channels in the composite channel. Both erosional and depositional process occurred in the transitional channel. A single transitional channel shows a smaller width,lower ratio of width to thickness,lenticular shape,and strong erosional ability. The sand body shows a low stability in lateral and a stacking pattern of random superposition or lateral splicing. The depositional channel,showing plate-like and lenticular shape and dominated by sedimentation,has a bigger width,higher width to thickness ratio of single channels,higher lateral stability and the stacking pattern of stable vertical aggradation.
Tian Rong-Heng,Xian Ben-Zhong,Chao Chu-Zhi et al. Sedimentary characteristics and model of lacustrine gravity flow channels: a case study of the Triassic Yanchang Formation of Yaoqu railway-bridge section in Ordos Basin[J]. JOPC, 2021, 23(5): 967-982.
[1] 陈飞,罗平,张兴阳,王训练,罗忠,刘柳红. 2010. 陕北地区上三叠统延长组三角洲骨架砂体粒度特征. 沉积学报, 28(1): 58-67. [Chen F,Luo P,Zhang X Y,Wang X L,Luo Z,Liu L H. 2010. Characteristics of grain size of delta sandbody framework in Yanchang Formation Upper Triassic,North Shaanxi. Acta Sedimentologica Sinica, 28(1): 58-67] [2] 冯娟萍,李文厚,欧阳征健. 2012. 鄂尔多斯盆地黄陵地区上三叠统延长组长7、长6油层组浊积岩沉积特征及地质意义. 古地理学报, 14(3): 295-302. [Feng J P,Li W H,Ouyang Z J. 2012. Sedimentary characters and geological implication of turbidite of the Chang 6 and Chang 7 intervals of Upper Triassic Yanchang Formation in Huangling area,Ordos Basin. Journal of Palaeogeography(Chinese Edition), 14(3): 295-302] [3] 付金华,李士祥,徐黎明,牛小兵. 2018. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义. 石油勘探与开发, 45(6): 936-946. [Fu J H,Li S X,Xu L M,Niu X B. 2018. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin,NW China. Petroleum Exploration and Development, 45(6): 936-946] [4] 付金华,邓秀芹,楚美娟,张海峰,李士祥. 2013. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义. 沉积学报, 31(5): 928-938. [Fu J H,Deng X Q,Chu M J,Zhang H F,Li S X. 2013. Features of deepwater lithofacies,Yanchang Formation in Ordos Basin and its petroleum significance. Acta Sedimentologica Sinica, 31(5): 928-938] [5] 贺静,冯胜斌,袁效奇,韩鹏,解古巍,张才利. 2011. 鄂尔多斯盆地周缘延长组露头剖面砂岩组分及地质意义分析. 岩性油气藏, 23(6): 30-36. [He J,Feng S B,Yuan X Q,Han P,Xie G W,Zhang C L. 2011. Sandstone component of outcrops of Yanchang Formation in the margin of Ordos Basin and its geological significance. Lithologic Reservoirs, 23(6): 30-36] [6] 梁晓伟,鲜本忠,冯胜斌,陈鹏,尤源,吴千然,淡卫东,张文淼. 2021. 鄂尔多斯盆地陇东地区长7段重力流砂体构型及其主控因素.沉积学报(待刊). [Liang X W,Xian B Z,Feng S B,Chen P,You Y,Wu Q R,Dan W D,Zhang W M. 2021. The architecture and main controls of gravity flow sandbodies of Chang 7 member in Longdong area,Ordos Basin. Acta Sedimentologica Sinica(in press)] [7] 李明培,邵龙义,夏玉成,李智学,贺丹,李丽. 2021. 鄂尔多斯盆地中部上三叠统瓦窑堡组层序—古地理与聚煤规律. 古地理学报, 23(2): 375-388. [Li M P,Shao L Y,Xia Y C,Li Z X,He D,Li L. 2021. Sequence-palaeogeography and coal accumulation of the upper Triassic Wayaobu Formation in central Ordos Basin. Journal of Palaeogeography(Chinese Edition), 23(2): 375-388] [8] 李云,胡作维,刘灿,董杰,贺静,袁效奇,魏杨. 2019. 鄂尔多斯盆地渭北地区上三叠统延长组长7油层组碳酸盐结核中自生碳酸盐矿物的特征. 古地理学报, 21(4): 577-588. [Li Y,Hu Z W,Liu C. Dong J,He J,Yuan X Q,Wei Y. 2019. Characteristics of authigenic carbonate minerals in carbonate concretions of the Chang 7 oil-bearing interval of Upper Triassic Yanchang Formation in Weibei area,ordos Basin. Journal of Palaeogeography(Chinese Edition), 21(4): 577-588] [9] 刘桠颖,徐怀民,李林,黄芸. 2009. 准噶尔盆地阜东斜坡带深水浊积扇沉积及油气勘探意义. 沉积与特提斯地质, 29(4): 29-34. [Liu Y Y,Xu H M,Li L,Huang Y. 2009. Deep-water turbite fan deposit and their significance for the oil-gas exploration in the eastern Fudong slope zone,Junggar basin,Xinjiang. Sedimentary Geology and Tethyan Geology, 29(4): 29-34] [10] 潘树新,刘化清,Zavala C,刘彩燕,梁苏娟,张庆石,白忠峰. 2017. 大型坳陷湖盆异重流成因的水道—湖底扇系统: 以松辽盆地白垩系嫩江组一段为例. 石油勘探与开发, 44(6): 860-870. [PAN S X,Liu H Q,Zavala C,Liu C Y,Liang S J,Zhang Q S,Bai Z F. 2017. Sublacustrine hyperpycnal channel-fan system in a large depression basin: a case study of Nen 1 Member,Cretaceous Nenjiang Formation in the Songliao Basin,NE China. Petroleum Exploration and Development, 44(6): 860-870] [11] 乔亚斌,张林,王予,张一果,马君霞,姜红霞. 2020. 鄂尔多斯盆地苏里格气田中奥陶统马家沟组五段凝块石类型与古盐度初步分析. 古地理学报, 22(1): 97-110. [Qiao Y B,Zhang L,Wang Y,Zhang Y G,Ma J X,Jiang H X. 2020. Thrombolite types and seawater palaeosalinity of the 5th Member of Middle Orodovician Majiagou Formation in Sulige Gas field,Ordos Basin. Journal of Palaeogeography(Chinese Edition), 22(1): 97-110] [12] 王建功,张道伟,杨少勇,张平,郭佳佳,李翔,马新民,倪祥龙,高妍芳,白亚东. 2020. 柴达木盆地西部渐新统湖相碳酸盐岩重力流沉积. 中国矿业大学学报, 49(4): 671-692. [Wang J G,Zang D W,Yang S Y,Zhang P,Guo J J,Li X,Ma X M,Ni X L,Gao Y F,Bai Y D. 2020. Lacustrine carbonate gravity flow deposits of Oligocene in the western Qaidam Basin. Journal of China University of Mining & Technology, 49(4): 671-692] [13] 王岚,李文厚,林潼,王若谷. 2012. 鄂尔多斯盆地上三叠统延长组长6油层组储集层成岩作用及其影响因素. 古地理学报, 14(3): 311-320. [Wang L,Li W H,Lin T,Wang R G. 2012. Diagenesis and its influencing factors of the Chang 6 interval of Upper Triassic Yanchang Formation in Ordos Basin. Journal of Palaeogeography(Chinese Edition), 14(3): 311-320] [14] 鲜本忠,安思奇,施文华. 2014. 水下碎屑流沉积: 深水沉积研究热点与进展. 地质论评, 60(1): 39-51. [Xian B Z,An S Q,Shi W H. 2014. Subaqueous debris flow: hotspots and advances of deep-water sedimention. Geological Review, 60(1): 39-51] [15] 鲜本忠,万锦峰,姜在兴,张建国,李振鹏,佘源琦. 2012. 断陷湖盆洼陷带重力流沉积特征与模式: 以南堡凹陷东部东营组为例. 地学前缘, 19(1): 121-135. [Xian B Z,Wan J F,Jiang Z X,Zhang J G,Li Z P,She Y Q. 2012. Sedimentary characteristcs and model of gravity flow deposition in the depressed belt of rift lacustrine basin: a case study form Dongying Formation in Nanpu Depression. Earth Science Frontiers, 19(1): 121-135] [16] 杨华,付金华,何海清,刘显阳,张忠义,邓秀芹. 2012. 鄂尔多斯华庆地区低渗透岩性大油区形成与分布. 石油勘探与开发, 39(6): 641-648. [Yang H,Fu J H,He H Q,Liu X Y,Zhang Z Y,Deng X Q. 2012. Formation and distribution of large low-permeability lithologic oil regions in Huaqing,Ordos Basin. Petroleum Exploration and Development, 39(6): 641-648] [17] 杨仁超,何治亮,邱桂强,金之钧,孙冬胜,金晓辉. 2014. 鄂尔多斯盆地南部晚三叠世重力流沉积体系. 石油勘探与开发, 41(6): 661-670. [Yang R C,He Z L,Qiu G Q,Jin Z J,Sun D S,Jin X H. 2014. Late Triassic gravity flow depositional systems in the southern Ordos Basin. Petroleum Exploration and Development, 41(6): 661-670] [18] 张国栋,鲜本忠,晁储志,宋德邻,刘建平,于硕,王馨冉,晏奇. 2019. 鄂尔多斯盆地三水河剖面上三叠统块状砂岩的异重流成因: 来自岩石结构的证据. 沉积学报, 37(5): 34-44. [Zhang G D,Xian B Z,Chao C Z,Song D L,Liu J P,Yu S,Wang X R,Yan Q. 2019. Flood-generated massive sandstones of the Sanshuihe outcrop in the Triassic Ordos Basin: evidence from sedimentary textural characteristics. Acta Sedimentologica Sinica, 37(5): 34-44] [19] 张庆石,张革,陈彬滔,王革,梁苏娟,刘彩燕. 2014. 松辽盆地坳陷期湖底扇沉积特征与分布规律: 以英台地区青山口组为例. 天然气地球科学, 25(3): 318-325. [Zhang Q S,Zhang G,Chen B T,Wang G,Liang S J,Liu C Y. 2014. Deposition characteristics and distribution pattern of sublauscustrine fan in Qingshankou Formation,Songliao Basin. Natural Gas Geoscience, 25(3): 318-325] [20] Clark J D,Pickering K T. 1996. Architectural elements and growth patterns of submarine channels: application to hydrocarbon exploration. AAPG Bulletin, 80(2): 194-221. [21] Liu J P,Xian B Z,Wang J H,Ji Y L,Lu Z Y,Liu S J. 2017. Sedimentary architecture of a sub-lacustrine debris fan: Eocene Dongying Depression,Bohai Bay Basin,east China. Sedimentary Geology, 362: 66-82. [22] Mayall M,Jones E,Casey M. 2006. Turbidite channel reservoirs: key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8): 821-841. [23] Miall A D. 1987. Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayenta Formation(Lower Jurassic),Southwest Colorado. Sedimentary Geology, 55: 233-262. [24] Moody J D,Pyles D R,Clark J,Bouroullec R. 2012. Quantitative outcrop characterization of an analog to weakly confined submarine channel systems: Morillo 1 member,Ainsa Basin,Spain. AAPG Bulletin, 96(10): 1813-1841. [25] Mutti E,Normark W R. 1991. An integrated approach to the study of turbidite systems. In: Weimer P,Link M Ⅰ(eds). Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. London: Graham and Trotman,1-38 [26] Normark W R. 1970. Growth patterns of deep-sea fans. AAPG Bulletin, 54(11): 2170-2195. [27] Talling P J. 2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow:deposits,theoretical and experimental analyses,and generalized models. Geological Society of America, 9: 460-488. [28] Talling P J,Paull C K,Piper D J W. 2013. How are subaqueous sediment density flows triggered,what is their internal structure and how does it evolve? Direct observations from monitoring of active flows. Earth-Science Reviews, 125: 244-287. [29] Wynn R B,Cronin B T,Peakall J. 2007. Sinuous deep-water channels: Genesis,geometry and architecture. Marine and Petroleum Geology, 24(6): 341-387. [30] Xian B Z,Liu J P,Dong Y L,Lu Z Y,He Y X,Wang J H. 2017. Classification and facies sequence model of subaqueous debris flows. Acta Geologica Sinica(English Edition), 91(2): 751-752. [31] Xian B Z,Wang J H,Gong C L,Yin Yu,Chao C Z,Liu J P,Zhang G D,Yan Q. 2018. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin,central China. Sedimentary Geology, 368: 68-82. [32] Zavala C,Pan S X. 2018. Hyperpycnal flows and hyperpycnites: origin and distinctive characteristics. Lithologic Reservoirs, 30(1): 1-27. [33] Zavala C,Arcuri M,Meglio M D,Diaz H G,Contreras C. 2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. AAPG Studies in Geology, 61: 31-51.