Characteristics of fabric selective pore distribution in carbonate sequence stratigraphy framework: A case study from platform margin facies of the Upper Ordovician Lianglitage Formation in Tazhong area,Tarim Basin
Qu Haizhou1, 2, 3, Sun Yaobin2, Zhang Yunfeng1, 2, 3, Pan Wenqing4, Zhang Zhenghong4, Yuan Ping4, Fan Kunyu4, Zhong Zhiqi2
1 Sichuan Key Laboratory of Natural Gas Geology,Southwest Petroleum University,Chengdu 610500,Sichuan; 2 Institute of Earth Science and Technology,Southwest Petroleum University,Chengdu 610500,Sichuan; 3 State Key Laboratory of Oil and Gas reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,Sichuan; 4 Tarim Oilfield Company,PetroChina,Korla 841000,Xinjiang
Abstract:The fabric selective pore is an important pore type of reservoir in the platform margin of the Upper Ordovician Lianglitage Formation in Tazhong area,Tarim Basin. The distribution of fabric pores in the sequence stratigraphy framework is not clear. Based on the analysis of mass data of cores,thin sections,well logging and seismic data,the fabric selective pores in Lianglitage Formation in sequence stratigraphy framework were classified into seven types,including solution interparticle pore,solution intraparticle pore,moldic pore,interparticle pore,fenestral pore,biointraparticle pore and growth framework pore. Within the high ̄frequency sequences, the fabric selective pores usually develop in the upper part of the reef-bank complex,which is interpreted to be exposed to the vadose zone and phreatic zone during the relative sea level drop. These fabric selective pores usually form a 10-40 m thick layer ,and each type of pores displays a distinct vertical distribution pattern. The development of fabric selective pores is controlled by the humid paleoclimate, frequent changes of relative sea-level, high deposition rate and the original high permeability in reef-bank complex in the platform margin. In the third order sequence,the layer of fabric selective pores mainly develop in the high stand system,and are distributed in the Member 3-Member 1 of Lianglitage Formation. Vertical distribution of fabric selective pore can be grouped into 5 stages,most of which are distributed in the progradational parasequence sets of 6, 8 and 9 followed by the aggradational parasequence sets of 5,7 and 10. From east to west,the amount, thickness and porosity of the fabric selective pore layers decrease across the study area,with the dominant types of fabric selective pores gradually changing from solution intraparticle pore,solution interparticle pores,moldic pores,biointraparticle pores into fenestral pores,solution intraparticle dissolved pores and solution interparticle dissolved pores.
Qu Haizhou,Sun Yaobin,Zhang Yunfeng et al. Characteristics of fabric selective pore distribution in carbonate sequence stratigraphy framework: A case study from platform margin facies of the Upper Ordovician Lianglitage Formation in Tazhong area,Tarim Basin[J]. JOPC, 2017, 19(5): 879-891.
[1] 鲍志东,朱井泉,江茂生,夏勇. 1998. 海平面升降中的元素地球化学响应: 以塔中地区奥陶纪为例. 沉积学报,16(4): 32-36. [Bao Z D,Zhu J Q,Jiang M S,Xia Y. 1998. Isotope and trace element evolution responding to sea-level fluctuation: An example of Ordovician in middle Tarim Basin. Acta Sedimentologica Sinica,16(4): 32-36] [2] 陈景山,王振宇,代宗仰,马青,蒋裕强,谭秀成. 1999. 塔中地区中上奥陶统台地边缘体系分析. 古地理学报,1(2): 8-17. [Chen J S,Wang Z Y,Dai Z Y,Ma Q,Jiang Y Q,Tan X C. 1999. Study of the Middle and Upper Ordovician rimmed carbonate platform system in the Tazhong Area,Tarim Basin. Journal of Palaeogeography(Chinese Edition),1(2): 8-17] [3] 韩剑发,孙崇浩,于红枫,吉云刚,张正红,徐彦龙. 2011. 塔中Ⅰ号坡折带奥陶系礁滩复合体发育动力学及其控储机制. 岩石学报,27(3): 845-856. [Han J F,Sun C H,Yu H F,Ji Y G,Zhang Z H,Xu Y L. 2011. Kinetics of reef-shoal complexes and its restriction to reservoir in Ordovician from Tazhong I fault belt. Acta Petrologica Sinica,27(3): 845-856] [4] 胡明毅,魏国齐,李思田,杨威,朱露,杨云海. 2010. 四川盆地嘉陵江组层序—岩相古地理特征和储集层预测. 沉积学报,28(6): 1145-1152. [Hu M Y,Wei G Q,Li S T,Yang W,Zhu L,Yang Y H. 2010. Characteristics of sequence-based lithofacies and paleogeography and reservoir prediction of the Jialingjiang Formation in Sichuan Basin. Acta Sedimentologica Sinica,28(6): 1145-1152] [5] 林畅松,杨海军,刘景彦,蔡振中,彭莉,阳孝法,杨永恒. 2009. 塔里木盆地古生代中央隆起带古构造地貌及其对沉积相发育分布的制约. 中国科学D辑: 地球科学,39(3): 306-316. [Lin C S,Yang H J,Liu J Y,Cai Z Z,Peng L,Yang X F,Yang Y H. 2009. The characteristics of paleo-tectonic geomorphology and constraints of sedimentary facies distribution in Paleozoic tectonic,Central uplift,Tarim. Science in China(Series D): Earth Sciences,39(3): 306-316] [6] 刘嘉庆,李忠,韩银学,彭守涛. 2010. 塔里木盆地塔中上奥陶统碳酸盐台地高频层序控制的早期成岩作用及其对储集层分布的影响. 岩石学报,26(12): 3629-3640. [Liu J Q,Li Z,Han Y X,Peng S T. 2010. Early diagenesis in high-frequency sequence framework of the Upper Ordovician carbonate platform in Tazhong Tarin Basin and its influence on reservoir distribution. Acta Petrologica Sinica,26(12): 3629-3640] [7] 刘嘉庆,李忠,黄君凑,韩银学,彭海军. 2012. 塔里木盆地良里塔格组沉积环境差异及其对碳酸盐储集层发育的制约. 中国科学D辑: 地球科学,42(12): 1802-1816. [Liu J Q,Li Z,Huang J C,Han Y X,Peng H J. 2012. Distinct sedimentary environments and their influences on carbonate reservoir evolution of the Lianglitage Formation in the Tarim Basin,Northwest China. Science China(Series D): Earth Sciences,42(12): 1802-1816] [8] 纪友亮,周勇,王改为,路琳琳. 2011. 下扬子地区古生界海相碳酸盐岩层序地层发育模式及储集层预测. 石油与天然气地质,32(54): 724-732. [Ji Y L,Zhou Y,Wang G W,Lu L L. 2011. Sequnce stratigraphic models and reservoir prediction of the Paleozoic marine carbonates in the Lower Yangtze area. Oil and Gas Geology,32(54): 724-732] [9] 贾承造,张师本,吴绍祖. 2003. 塔里木盆地及周边地层(上册)各纪地层总结. 北京: 科学出版社,44-110. [Jia C Z,Zhang S B,Wu S Z. 2003. Stratigraphy of the Tarim Basin and Adjacent Areas. Beijing: Science Press: 44-110] [10] 江茂生,朱井泉,陈代钊,张任祜,乔广生. 2002. 塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应. 中国科学(D辑): 地球科学,32(1): 36-42. [Jiang M S,Zhu J Q,Chen D Z,Zhang R H,Qiao G S. 2002. Characteristics of isotopes of carbon and strontium in the Ordovician carbonate rocks and their responding to eustatic changes. Science China(Series D): Earth Sciences,32(1): 36-42] [11] 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学进展之一. 古地理学报,12(5): 549-564. [Mei M X. 2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition),12(5): 549-564] [12] 梅冥相. 2011. 从不整合面复杂的地质涵义窥视层序地层学的诞生: 层序地层学重要的科学命题之一. 地层学杂志,35(2): 179-192. [Mei M X. 2011. Understanding the birth of sequence stratigraphy through the complex geological meanings of unconformity: The first important scientific problem in sequence stratigraphy. Journal of Stratigraphy,35(2): 179-192] [13] 梅冥相. 2012. 沉积层序形成机制的海平面变化解释: 层序地层学的重要科学命题之二. 地层学杂志: 36(4): 792-806. [Mei M X. 2012. Interpretation of sea-level changes from the genetic stratigraphy of depositional sequences: The second important scientific problem in sequence stratigraphy. Journal of Stratigraphy,36(4): 792-806] [14] 屈海洲,王振宇,杨海军,张云峰,于红枫,王茜. 2013. 礁滩相碳酸盐岩岩溶作用及其对孔隙分布的控制: 以塔中东部上奥陶统良里塔格组为例. 石油勘探与开发: 40(5): 552-558. [Qu H Z,Wang Z Y,Yang H J,Zhang Y F,Yu H F,Wang X. 2013. Karstification of reef-bank facies carbonate rock and its control on pore distribution: A case study of Upper Ordovician Lianglitage Formation in eastern Tazhong area,Tarim Basin. Petroleum Exploration and Development,40(5): 552-558] [15] 屈海洲,王振宇,张正红,张云峰,于红枫,郑剑. 2014. 塔中地区晚奥陶世镶边台地沉积演化. 沉积学报,32(5): 823-831. [Qu H Z,Wang Z Y,Zhang Z H,Zhang Y F,Yu H F,Zheng J. 2014. Sedimentary characters and evolution of the rimmed platform in Upper Ordovician of the Tazhong area,Tarim Basin,NW China. Acta Sedimentologica Sinica,32(5): 823-831] [16] 王振宇,孙崇浩,杨海军,周成刚,张正红. 2010a. 塔中Ⅰ号坡折带上奥陶统台缘礁滩复合体建造模式. 地质学报,84(4): 546-552. [Wang Z Y,Sun C H,Yang H J,Zhou C G,Zhang Z H. 2010a. Formation pattern of Upper Ordovician reef-bank complex along the Tazhong Slopebreak Ⅰ,Tarim Block,NW China. Acta Geologica Sinica,84(4): 546-552] [17] 王振宇,孙崇浩,张云峰,韩剑发,李新生,吉云刚. 2010b. 塔中Ⅰ号坡折带上奥陶统成礁背景分析. 沉积学报,28(3): 525-533. [Wang Z Y,Sun C H,Zhang Y F,Han J F,Li X S,Ji Y G. 2010b. Analysis on the Upper Ordovician reef formation along the Tazhong SlopebreakⅠ. Acta Sedimentologica Sinica,28(3): 525-533] [18] 王振宇,严威,张云峰,孙崇浩,杨海军,孙丽霞,李新生,吉云刚. 2007. 塔中16-44井区上奥陶统台缘礁滩体沉积特征. 新疆石油地质,28(6): 681-683. [Wang Z Y,Yan W,Zhang Y F,Sun C H,Yang H J,Sun L X,Li X S,Ji Y G. 2007. Depositional characteristics of Upper Ordovician platform margin reefs in TZ16-44 area,Tarim Basin. Xinjiang Petroleum Geology,28(6): 681-683] [19] 吴因业,朱如凯,罗平,袁选俊,候连华,张天舒. 2011. 沉积学与层序地层学研究新进展: 第18届国际沉积学大会综述. 沉积学报,29(1): 199-206. [Wu Y Y,Zhu R K,Luo P,Yuan X J,Hou L H,Zhang T S. 2011. Advance on sedimentology and sequence stratigraphy: A summary from 18th International Sedimentology Congress. Acta Sedimentologica Sinica,29(1): 199-206] [20] 杨海军,邬光辉,韩剑发,王晓丰,吉云刚. 2007. 塔里木盆地中央隆起带奥陶系碳酸盐岩台缘带油气富集特征. 石油学报,28(4): 26-30. [Yang H J,Wu G H,Han J F,Wang X F,Ji Y G. 2007. Characteristics of hydrocarbon enrichment along the Ordovician carbonate platform margin in the central uplift of Tarim Basin. Acta Petrolei Sinica,28(4): 26-30] [21] 于炳松,樊太亮,黄文辉,刘忠宝,高志前. 2007. 层序地层格架中岩溶储集层发育的预测模型. 石油学报,28(4): 41-45. [Yu B S,Fan T L,Huang W H,Liu Z B,Gao Z Q. 2007. Predictive model for karst reservoirs in sequence stratigraphic framework. Acta Petrolei Sinica,28(4): 41-45] [22] 赵宗举,陈轩,潘懋,吴兴宁,郑兴平,潘文庆. 2010. 塔里木盆地塔中—巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究. 地质学报,84(4): 518-536. [Zhao Z J,Chen X,Pan M,Wu X N,Zheng X P,Pan W Q. 2010. Milankovitch cycles in the Upper Ordovician Lianglitage Formation in the Tazhong-Bachu area,Tarim Basin. Acta Geologica Sinica,84(4): 518-536] [23] 周新源,王招明,杨海军,王清华,邬光辉. 2006. 中国海相油气田勘探实例之五: 塔中奥陶系大型凝析气田的勘探和发现. 海相油气地质,11(1): 45-51. [Zhou X Y,Wang Z M,Yang H J,Wang Q H,Wu G H. 2006. Cases of discovery and exploration of marine fields in China(Part 5): Tazhong Ordovician condensate field in Tarim Basin. Marine Origin Petoleum Geology,11(1): 45-51] [24] Archie G E. 1952. Classification of carbonate reservoir rocks and petrophysical considerations. AAPG Bulletin,36(2): 278-298. [25] Betzler C,Fürstenau J,Lüdmann T,Hübscher C,Lindhorst S,Paul A,Reijmer J J G,Droxler A W. 2013. Sea-level and ocean-current control on carbonate-platform growth,Maldives,Indian Ocean. Basin Research,25(2): 172-196. [26] Booler J,Tucker M E. 2002. Distribution and geometry of facies and early diagenesis: The key to accommodation space variation and sequence stratigraphy: Upper Cretaceous Congost Carbonate platform,Spanish Pyrenees. Sedimentary Geology,146(3-4): 225-247. [27] Catuneanu O. 2006. Principles of Sequence Stratigraphy. Amsterdam: Elsevier. [28] Choquette P W,Pray L C. 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin,(54): 207-250. [29] Embry A. 2002. Transgressive-Regressive(T-R)sequence strtigraphy. In: Armentrout J,Rosen N(eds). Sequence Stratigraphic Models for Exporation and Production. Houston Gulf Coast SEPM Conference Proceedings,151-172. [30] Emery D,Myers K. 1996. Sequence Stratigraphy. Oxford: Blackwell Science. [31] Eriksson M J,Calner M. 2008. A sequence stratigraphical model for the Late Ludfordian(Silurian)of Gotland,Sweden: Implications for timing between changes in sea level,palaeoecology,and the global carbon cycle. Facies,54(2): 253-276. [32] Fritz R D,Medlock P,Kuykendall M J,Wilson J L. 2012. The geology of the Arbuckle Group in the midcontinent: Sequence stratigraphy,reservoir development,and the potential for hydrocarbon exploration. In: Derby J R,Fritz R D,Longacre S A,Morgan W A,Sternbach C A(eds). The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian-Ordovician Sauk Megasequence of Laurentia. AAPG Memoir 98: 203-273. [33] Harris O M,Saller A H,Simo J A. 1999. Introduction. In: Havris P M,Saller A H,Simo J A(eds). Advances in Carbonate Sequence Stratigraphy: Applications to Reservoirs,Outcrops and Models. Tulsa,OK: SEPM,1-10. [34] Lønøy A. 2006. Making sense of carbonate pore systems. AAPG Bulletin,90(9): 1381-1405. [35] Lucia F J. 1983. Petrophysical parameters estimated from visual descriptions of carbonate rocks: A field classification of carbonate pore space. Journal of Petroleum Technology,35: 629-637. [36] Lucia F J. 1999. Carbonate Reservoir Characterization. Berlin Heidelberg: Springer-Verlag: 226. [37] Moore C H. 2001. Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. New York: Elsevier,61-340. [38] Mylroie J E,Carew J L. 1995. Karst development on carbonate islands. In: David A. D,Authur H. S,P M Harris(eds). Unconformities and Porosity in Carbonate Strata. AAPG Memoir 63: 55-77. [39] Phelps R M,Kerans C,Robert G L. 2013. Oceanographic and eustatic control of carbonate platform evolution and sequence stratigraphy on the Cretaceous(Valanginian-Campanian)passive margin,northern Gulf of Mexico. Sedimentology,doi:10.1111/sed.12062. [40] Posamentier H W,Allen G P. 1999. Siliciclastic Sequence Stratigraphy Concepts and Application. SEPM Concepts in Sedimentology and Paleontology,7: 1-210. [41] Ronchi P,Ortenzi A,Borromeo O,Claps M,Zempolich W G. 2010. Depositional setting and diagenetic processes their impact on the reservoir quality in the ate Visean-Bashkirian Kashagan carbonate platform(Pre-Caspian Basin,Kazakhstan). AAPG Bulletin,94(9): 1313-1348. [42] Saller A H,Budd D A,Hartris P M. 1994a. Unconformities and porosity development in carbonate strata: Ideas from a Hedberg Confernce. AAPG Bulletin,78(6): 857-872. [43] Saller A H,Dickson J A D,Boyd S A. 1994b. Cycle stratigraphy and porosity in Pennsylvanian and Lower Permian shelf limestone,Eastern Central Basin Platform. AAPG Bulletin,78(12): 1820-1842. [44] Sarg J F. 1988. Carbonate sequence stratigraphy and controls on carbonate platform development: Case study from Permian of West Texas-New Mexico. AAPG Bulletin,72(12): 1522. [45] Spalluto L. 2012. Facies evolution and sequence chronostratigraphy of a “mid”-Cretaceous shallow-water carbonate succession of the Apulia Carbonate Platform from the northern Murge area(Apulia,southern Italy). Facies,58(1): 17-36. [46] Tucker M E. 1993. Carbonate diagenesis and sequence stratigraphy. In: Wright V P(ed),Sedimentology Review. Oxford: Blackwell: 51-72.