Diagenesis and densification process of the Chang 8 Interval of Triassic Yanchang Formation, western Jiyuan area, Ordos Basin
Wang Yang1, 2, Liu Luofu1, 2, Li Shutong3, Ji Haitao1, 2, Li Linze1, 2, Luo Zehua1, 2, Xu Tong1, 2
1 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249; 2 Basin and Reservoir Research Center,China University of Petroleum(Beijing),Beijing 102249; 3 Key Laboratory of Petroleum Resources,Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics,Chinese Academy of Science,Lanzhou 730000,Gansu
Abstract:The mechanics of diagenesis and densification of the reservoir rocks from Chang 8 Interval,Triassic Yanchang Formation,western Jiyuan area,Ordos Basin were investigated through analyses of cores,cast thin sections,scanning electron microscope images,carbon and oxygen isotopes,and fluid inclusion. The reservoir rocks are mainly composed of lithic arkose and feldspathic litharenite. The reservoir rocks went through diagenesis processes include compaction,pressure solution,cementation,alteration,dissolution and structural fracturing so that the reservoirs are considered to be at late middle-diagenetic stage A. The typical diagenesis sequence includes mechanical compaction,cementation of cholorite rim,cementation of early micritic calcite,cementation of quartz overgrowth,dissolution of feldspar and rock fragments,cementation of authigenic kaolinite,cementation of authigenic quartz and cementation of medium term(ferrous)calcite in choronological order. The results show that: (1)The close proximity towards provenance and rapid fluctuation of lake level contributed to sediment supply. Facies distribution is the main control of reservoir properties where distributary channel facies and interdistributary bay facies show favorable and low reservoir qualities,respectively. (2)The original porosity of Chang 8 Interval during early burial stage is 41.35% and decreased rapidly due to compaction,resulting in a 50.67 percent drop of original porosity. Cementation resulted in an additional 37.48 percent decrease of original porosity. Dissolution increase the porosity by 3.26%,howeverthe reservoir quality is still limited with this slight increase of porosity. (3)The sedimentary and diagenetic factors above lead to the densification of the Chang 8 Interval reservoirs in western Jiyuan area,and the densification process of Chang 8 Interval can be divided into four periods: Rapid porosity reduction through compaction,porosity reduction through early cementation,porosity increase through dissolution and densification through cementation. (4)The porosity of the reservoir is far below 10% during hydrocarbon accumulation,therefore,the reservoirs of Chang 8 Interval are interpreted to be densified through compaction prior to hydrocarbon accumulation.
Wang Yang,Liu Luofu,Li Shutong et al. Diagenesis and densification process of the Chang 8 Interval of Triassic Yanchang Formation, western Jiyuan area, Ordos Basin[J]. JOPC, 2017, 19(5): 892-906.
[1] 付锁堂,邓秀芹,庞锦莲. 2010. 晚三叠世鄂尔多斯盆地湖盆沉积中心厚层砂体特征及形成机制分析. 沉积学报,28(6): 1081-1089. [Fu S T,Deng X Q,Pang J L. 2010. Characteristics and mechanism of thick sandbody of Yanchang Formation at the center of Ordos Basin. Acta Sedimentologica Sinica,28(6): 1081-1089] [2] 贾承造,邹才能,李建忠,李登华,郑明. 2012. 中国致密油评价标准、主要类型、基本特征及资源前景. 石油学报,33(3): 343-350. [Jia C Z,Zou C N,Li J Z,Li D H,Zheng M. 2012. Assessment criteria,maintypes,basic features and resource prospects of the tight oil in China. Acta Petrolei Sinica,33(3): 343-350] [3] 罗晓容,张刘平,杨华,付金华,喻建,杨飏,武明辉. 2010. 鄂尔多斯盆地陇东地区长81段低渗油藏成藏过程. 石油与天然气地质,31(6): 770-778. [Luo X R,Zhang L P,Yang H,Fu J H,Yu J,Yang Y,Wu M H. 2010. Oil accumulation process in the low-permebility Chang 81 Member Longdong area,the Ordos Basin. Oil and Gas Geology,31(6): 770-778] [4] 任战利,赵重远,张军,于忠平. 1994. 鄂尔多斯盆地古地温研究. 沉积学报,12(1): 56-65. [Ren Z L,Zhao Z Y,Zhang J,Yu Z P. 1994. Research on paleotemperature in the Ordos Basin. Acta Sedimentological Sinica,12(1): 56-65] [5] 孙致学,孙治雷,鲁洪江,尹希杰. 2010. 砂岩储集层中碳酸盐胶结物特征: 以鄂尔多斯盆地中南部延长组为例. 石油勘探与开发,37(5): 543-551. [Sun Z X,Sun Z L,Lu H J,Yin X J. 2010. Characteristics of carbonate cements in sandstone reservoirs: A case from Yanchang Formation,middle and southern Ordos Basin,China. Petroleum Exploration and Development,37(5): 543-551] [6] 田亚铭,施泽进,李庭艳,梁晓伟,辛红刚,吴晓明,高翔. 2011. 姬塬地区长8油层组碳酸盐胶结物特征与成因. 西安石油大学学报(自然科学版),26(3): 26-31. [Tian Y M,Shi Z J,Li T Y,Liang X W,Xin H G,Wu X M,Gao X. 2011. Characteristics and origin of the carbonate cements of Chang 8 member in Jiyuan area,Ordos Basin. Journal of Xi’an Shiyou University,26(3): 26-31] [7] 王大锐. 2000. 油气稳定同位素地球化学. 北京: 地质出版社,111-118. [Wang D R. 2000. Stable Isotope Geochemistry of Oil and Gas. Beijing: Geological Publishing House,111-118] [8] 王学军,王志欣,陈杰,曾溅辉. 2011. 鄂尔多斯盆地镇北油田延长组石油聚集理论. 石油勘探与开发,38(3): 299-306. [Wang X J,Wang Z X,Chen J,Zeng J H. 2011. Petroleum migration and accumulation of Yanchang Formation in the Zhenbei Oilfield,Ordos Basin. Petroleum Exploration and Development,38(3): 299-306] [9] 汪洋,李树同,牟炜卫,闫灿灿. 2016. 姬塬西部地区长81致密储集层特征及孔隙度演化分析. 岩性油气藏,28(4): 59-66. [Wang Y,Li S T,Mou W W,Yan C C. 2016. Tight reservoir characteristics and porosity evolution of Chang 81 in western Jiyuan area. Lithologic Reservoirs,28(4): 59-66] [10] 席胜利,李文厚,李荣西. 2008. 烃源岩生烃期次与油气成藏: 以鄂尔多斯盆地西缘马家滩地区长7烃源岩为例. 石油勘探与开发,35(6): 657-663. [Xi S L,Li W H,Li R X. 2008. Hydrocarbon generation and reservoir formation: A case from Chang 7 source rock in Majiatan area,west margin of Ordos Basin. Petroleum Exploration and Development,35(6): 657-663] [11] 闫旭光. 2014. 吴起周湾—长城地区延长组长6、长8油层组沉积相及储存特征研究. 西北大学硕士论文. [Yan X G. 2014. Reservoir Characteristics and Sedimentary Facies of Chang 8 and Chang 6 Formation in Zhouwan-Changcheng Area of Wuqi Country on Ordos Basin. Master’s Thesis of Northwest University] [12] 姚泾利,邓秀芹,赵彦德,韩天佑,楚美娟,庞锦莲. 2013. 鄂尔多斯盆地延长组致密油特征. 石油勘探与开发,40(2): 150-158. [Yao J L,Deng X Q,Zhao Y D,Han T Y,Chu M J,Pang J L. 2013. Characteristics of tight oil in Triassic Yanchang Formation,Ordos Basin. Petroleum Exploration and Development,40(2): 150-158] [13] 姚婷婷,鲍志东,张云龙,魏文风,窦鲁星,韦明洋,管聪. 2016. 鄂尔多斯盆地姬塬油田西部长8段储集层成岩作用与致密成因. 矿物岩石,36(2): 99-111. [Yao T T,Bao Z D,Zhang Y L,Wei W F,Dou L X,Wei M Y,Guan C. 2016. Diagenesis and causes of tight sandstones of Chang 8 reservoirs in the west of Jiyuan oilfield of Ordos Basin. Journal of Mineralogy and Petrology,36(2): 99-111] [14] 应凤祥, 何东博, 龙玉梅, 林西生. 2003. SY/T5477-2003, 碎屑岩成岩阶段划分. 北京: 石油工业出版社, 1-9. [Ying F X, He D B, Long Y M, Lin X S. 2003. SY/T5477-2003, The Division of Diagenetic Stages in Clastic Rocks. Beijing: Petroleum Industry Press, 1-9] [15] 曾联波,李忠兴,史成恩,王正国,赵继勇,王永康. 2007. 鄂尔多斯盆地上三叠统延长组特低渗透砂岩储集层裂缝特征及成因. 地质学报,81(2): 174-180. [Zeng L B,Li Z X,Shi C E,Wang Z G,Zhao J Y,Wang Y K. 2007. Characteristics and origin of fractures in the extra low permeability sandstone reservoirs of the upper Triassic Yanchang Formation in the Ordos Basin. Acta Geologica Sinica,81(2): 174-180] [16] 邹才能,朱如凯,吴松涛,杨智,陶士振,袁选俊,侯连华,杨华,徐春春,李登华,白斌,王岚. 2012. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报,33(2): 173-187. [Zou C N,Zhu R K,Wu S T,Yang Z,Tao S Z,Yuan X J,Hou L H,Yang H,Xu C C,Li D H,Bai B,Wang L. 2012. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica,33(2): 173-187] [17] Beard D C,Weyl P K. 1973. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin,57(2): 349-369. [18] Dai J X,Ni Y Y,Wu X Q. 2012. Tight gas in China and its significance in exploration and exploitation. Petroleum Exploration and Development,39(3): 257-264. [19] Hood S D,Nelson C S,Kamp P J J. 2003. Modification of fracture porosity by multiphase vein mineralization in an Oligocene motrolipical carbonate reservoir,Taranaki Basin,New Zealand. AAPG Bulletin,87(10): 1575-1597. [20] Jia C Z,Zheng M,Zhang Y F. 2012. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development,39(2): 129-136. [21] Keith M L,Weber J N. 1964. Isotopic composition and environmental classification of selected limestones and fossils. Geochimica et Cosmochimica Acta,28: 1787-1816. [22] Ketzer J M,Holz M,Morad S,Al-Aasm I S. 2003. Sequence stratigraphic distribution of diagenetic alterations in coal-bearing,paralic sandstone: Evidence from the Rio Bonito Formation(early Permian),Southern Brazil. Sedimentology,50(5): 855-877. [23] Lai J,Wang G W,Ran Y,Zhou Z L,Cui Y F. 2016. Impact of diagenesis on the reservoir quality of tight oil sandstones: The case on upper Triassic Yanchang Formation Chang7 oil layers in Ordos Basin,China. Journal of Petroleum Science and Engineering,145: 54-65. [24] Odigi M I,Amajor L C. 2010. Geochemistry of carbonate cements in Cretaceous sandstones,southeast Benue Trough,Nigeria: Implications for geochemical evolution of formation waters. Journal of African Earth Science,57(3): 213-226. [25] Pittman E D,Larese R E. 1991. Compaction of lithic sands: Experimental results and application. AAPG Bulletin,75(8): 1279-1299. [26] Reed J S,Reilcsson K A,Kowalewski M. 2005. Climatic,depositional and burial controls on diagenesis of Appalachian Carboniferous sandstones: Qualitative and quantitative method. Sedimentary Geology,17(6): 225-246. [27] Scherer M. 1987. Parameters influencing porosity in sandstones: A model for sandstone porosity prediction. AAPG Bulletin,71(5): 485-491. [28] Shackleton N J. 1974. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus uvigerina: Isotopic changes in the ocean during the last glacial. Colloques Internationaux Centre National De La Recherche Scientifique,219(302-209): 203-209.