Sedimentary characteristics and reef-forming models of the Ordovician reefs in Lianglitage area,Tarim Basin
Meng Miao-Miao1, 2, 3, Fan Tai-Liang1, 2, Wei Duan1, 2, Wang Shan-Shan1, 2
1 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083; 2 Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism,Ministry of Education,China University of Geosciences(Beijing),Beijing 100083; 3 Bureau of Economic Geology,The University of Texas at Austin,Austin 78758,USA
Abstract:The Ordovician reef reservoirs in the Tarim Basin have been receiving more and more attention. The present research describes the reefs in Lianglitage area, Tarim Basin: NYG-1 reef (at the top of Yingshan Formation) and NYG-2 reef (at the bottom of Yijianfang Formation). Biotypes, lithologies, and sedimentary facies units of these two reefs were detailed documented, using detailed field observations, measurements, and thin section identifications. The results suggest that reef-building organisms are mainly composed of calathiums and that lithology associated with reefs is bafflestones, boundstones, bioclastic wackestones, bioclastic packstones, intraclastic packstones, bioclastic grainstones, intraclastic grainstones, and peloidal grainstones. Facies units in the NYG-1 reef mainly contain reef base, reef core, reef top, reef flank and reef cap. However, the NYG-2 reef consist only of reef base, reef core and reef cap. The Yingshan Formation is rich in calathium-baffle reefs, while Yijianfang Formation is dominated by calathium baffle-binding reefs. Reefs in Yingshan Formation are in the shape of circle-like and intra-platform patches, without obvious directional anisotropies. Reefs in Yijianfang Formation, in contrast, contain platform margin reefs that extensively show the vertical migration characteristics. Both formations have experienced three phases of evolutions, namely colonization, vertical aggradation, and capping. The difference lies mainly in the capping phase. More specifically, during the deposition of Yingshan Formation, the rapid decrease of sea levels and the high water energy led to the perish of calathium and the formation of grainstones, whereas the rise of sea levels and the development of considerable planktonic algae organisms caused the suffocation of calathiums. To conclude, this research provides insights into building reefs depositional models of the Tarim Basin and exploring new methods of comparative study on outcrops and underground reefs.
Meng Miao-Miao,Fan Tai-Liang,Wei Duan et al. Sedimentary characteristics and reef-forming models of the Ordovician reefs in Lianglitage area,Tarim Basin[J]. JOPC, 2018, 20(2): 175-190.
[1] 邓小江,梁波,莫耀汉,李国蓉,王鑫,于海波,乔占峰. 2007. 塔河油田奥陶系一间房组礁滩相储集层特征及成因机制新认识. 地质科技情报, 26(4): 63-69. [Deng X J,Liang B,Mo Y H,Li G R,Wang X,Yu H B,Qiao Z F. 2007. A new know of characteristics and genesis of reef and bank facies reservoirs in Ordovician Yijianfang Formation in Tahe Oilfield. Geological Science and Technology Information, 26(4): 63-69] [2] 范嘉松. 1996. 中国生物礁与油气. 北京: 海洋出版社. [Fan J S. 1996. The Ancient Organic Reefs of China and Their Relations to Oil and Gas. Beijing: China Ocean Press] [3] 方大钧,沈忠悦. 2001. 塔里木地块各时代视磁极及板块漂移. 浙江大学学报(理学版), 28(1): 100-106. [Fang D J,Shen Z Y. 2001. Phanerozoic apparent polar-wander paths of Tarim and plate motion. Journal of Zhejiang University(Science Edition), 28(1): 100-106] [4] 高志前,樊太亮,王惠民,刘忠宝. 2005. 塔中地区礁滩储集体形成条件及分布规律. 新疆地质, 23(3): 283-287. [Gao Z Q,Fan T L,Wang H M,Liu Z B. 2005. The developmental conditions and distributional rules of the reef-shoal reservoirs in central Tarim Basin. Xinjiang Geology, 23(3): 283-287] [5] 顾家裕,方辉,蒋凌志. 2001. 塔里木盆地奥陶系生物礁的发现及其意义. 石油勘探与开发, 28(4): 1-3. [Gu J Y,Fang H,Jiang L Z. 2001. The significance of Ordovician reef discovery in Tarim Basin. Petroleum Exploration and Development, 28(4): 1-3] [6] 顾家裕,张兴阳,罗平,罗忠,方辉. 2005. 塔里木盆地奥陶系台地边缘生物礁—滩发育特征. 石油与天然气地质, 26(3): 277-283. [Gu J Y,Zhang X Y,Luo P,Luo Z,Fang H. 2005. Development characteristics of organic reef-bank complex on Ordovician carbonate platform margin in Tarim Basin. Oil & Gas Geology, 26(3): 277-283] [7] 郭峰,赖生华,郭岭. 2010. 塔里木盆地达坂塔格奥陶系地层层序及沉积演化. 地层学杂志, 34(2): 135-144. [Guo F,Lai S H,Guo L. 2010. Ordovician sequence stratigraphy and sedimentology in the Dabantage area,Tarim Basin. Journal of Stratigraphy, 34(2): 135-144] [8] 贺萍,胡明毅,朱忠德,王青春. 2003. 塔里木盆地轮南地区中奥陶统生物礁储集层特征及影响因素. 海相油气地质,8(1): 24-29. [He P,Hu M Y,Zhu Z D,Wang Q C. 2003. Characteristics and genesis of Middle Ordovician reef reservoirs in Lunnan area,Tarim Basin. Marine Origin Petroleum Geology, 8(1): 24-29] [9] 焦养泉,荣辉,王瑞,吴立群,颜佳新,曾凡平,顾元,李荣. 2011. 塔里木盆地西部一间房露头区奥陶系台缘储集层沉积体系分析. 岩石学报, 27(1): 285-296. [Jiao Y Q,Rong H,Wang R,Wu L Q,Yan J X,Zeng F P,Gu Y,Li R. 2011. Reservoir depositional system analysis of Ordovician carbonate platform margin in Yijianfang outcrops of western Tarim Basin. Acta Petrologica Sinica, 27(1): 285-296] [10] 李相明,杨申谷. 2006. 塔里木盆地巴楚地区一间房组生物礁特征. 石油天然气学报, 28(3): 13-16. [Li X M,Yang S G. 2006. Reef characteristics of Yijianfang Formation in Bachu area of Tarim Basin. Journal of Oil and Gas Technology, 28(3): 13-16] [11] 罗平,张兴阳,顾家裕,汪圣国,林鹏. 2003. 塔里木盆地奥陶系生物礁露头的地球物理特征. 沉积学报, 21(3): 423-427. [Luo P,Zhang X Y,Gu J Y,Wang S G,Lin P. 2003. Geophysical characteristics of Ordovician reef outcrops in Tarim Basin. Acta Sedimentologica Sinica, 21(3): 423-427] [12] 齐文同,范嘉松. 2002. 生物礁生态系统演化历史与地球环境的进化. 地学前缘, 9(3): 124. [Qi W T,Fan J S. 2002. Organic reef ecosystem evolution history and the evolution of the earth's environment. Earth Science Frontiers, 9(3): 124] [13] 沈安江,陈子炓,寿建峰. 1999. 相对海平面升降与中国南方二叠纪生物礁油气藏. 沉积学报, 17(3): 367-373. [Shen A J,Chen Z Z,Shou J F. 1999. Permian reef oil & gas pool in southern China controlled by relative sea level changes. Acta Sedimentologica Sinica, 17(3): 367-373] [14] 邬光辉,黄广建,王振宇,董立胜,董瑞霞. 2007. 塔中奥陶系生物礁地震识别与预测. 地质与勘探, 27(4): 39-42. [Wu G H,Huang G J,Wang Z Y,Dong L S,Dong R X. 2007. The seismic identification and prediction of the reef in the Ordovician of the central Tarim Basin. Geology and Exploration, 27(4): 39-42] [15] 徐康,刘思彤,于炳松. 2012. 塔里木盆地巴楚地区一间房组礁滩体沉积特征. 新疆石油地质, 33(5): 536-539. [Xu K,Liu S T,Yu B S. 2012. Reef-flat complex sedimentary characteristics of Middle Ordovician Yijianfang Formation in Bachu area,Tarim Basin. Xinjiang Petroleum Geology, 33(5): 536-539] [16] 张兴阳,罗平,顾家裕,曾校丰,汪圣国,林鹏. 2004. 探地雷达在露头地质研究中的应用: 以塔里木盆地奥陶系碳酸盐岩露头为例. 石油实验地质, 26(2): 212-216. [Zhang X Y,Luo P,Gu J Y,Zeng X F,Wang S G,Lin P. 2004. Application of ground penetrating radar in outcrop geological study. Petroleum Geology & Experiment, 26(2): 212-216] [17] 赵宗举,潘文庆,张丽娟,邓胜徽,黄智斌. 2009. 塔里木盆地奥陶系层序地层格架. 大地构造与成矿学, 33(1): 175-188. [Zhao Z J,Pan W Q,Zhang L J,Deng S W,Huang Z B. 2009. Sequence stratigraphy in the Ordovician in the Tarim Basin. Geotectonica Metallogenia, 33(1): 175-188] [18] 郑剑锋,沈安江,乔占峰. 2015. 基于数字露头的三维地质建模技术: 以塔里木盆地一间房剖面一间房组礁滩复合体为例. 岩性油气藏, 27(5): 108-115. [Zheng J F,Shen A J,Qiao Z F. 2015.3D geologic modeling technology based on digital outcrop: A case study of reef-shoal body of Yijianfang Formation in Yijianfang outcrop,Tarim Basin. Lithologic Reservoirs, 27(5): 108-115] [19] 朱忠德,胡明毅,刘秉理. 2006. 中国早—中奥陶世生物礁. 北京: 地质出版社. [Zhu Z D,Hu M Y,Liu B L. 2006. Early-Middle Ordovician Reefs in China. Beijing: Geological Publishing House] [20] Barnaby R J,Ward W B. 1995. Sequence stratigraphic framework,high-frequency cyclicity and three-dimensional heterogeneity: Grayburg Formation,Brokeoff Mountains,New Mexico. In: Carbonate Facies and Sequence Stratigraphy: Practical Applications of Carbonate Models: Permian Basin Section.SEPM Publication,36-95. [21] Dunham R J. 1970. Stratigraphic reefs versus ecologic reefs. AAPG Bulletin, 54(10): 1931-1932. [22] Embry Ⅲ A F,Klovan J E. 1971. A Late Devonian reef tract on northeastern Banks Island,NWT. Bulletin of Canadian Petroleum Geology, 19(4): 730-781. [23] Flügel E. 2004. Microfacies of Carbonate Rocks. Berlin: Springer,177-242. [24] Folk R L. 1962. Spectral subdivision of limestone types. In: Ham W E(ed). Classification of Carbonate Rocks. Mem. Am. Ass. Petro. Geol., 1: 62-84. [25] Grötsch J. 2009. Guilds,cycles and episodic vertical aggradation of a reef(Llate Barremian to Early Aptian,Dinaric carbonate platform,Slovenia). In: Orbital Forcing and Cyclic Sequences. Special Publication 19 of the IAS, 38: 227. [26] James N P,Debrenne F. 1980. Lower Cambrian bioherms: Pioneer reefs of the Phanerozoic. Acta Palaeontologica Polonica, 25(3-4): 655-668. [27] Jiao Y,Wu L,Rong H,Wang Y,Wang R. 2012. Paleoecology of the Ordovician reef-shoal depositional system in the Yijianfang outcrop of the Bachu area,West Tarim Basin. Journal of Earth Science, 23(4): 408-420. [28] Kerans C,Lucia F J,Senger R K. 1994. Integrated characterization of carbonate ramp reservoirs using Permian San Andres Formation outcrop analogs. AAPG Bulletin, 78(2): 181-216. [29] Marshall J F,Davies P J. 1982. Internal structure and Holocene evolution of One Tree Reef,southern Great Barrier Reef. Coral Reefs, 1(1): 21-28. [30] Montaggioni L F. 2005. History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors. Earth-Science Reviews,71(1):1-75. [31] Newell N D,Rigby J K,Fischer A G,Whiteman A J,Hickox J E,Bradley J S. 1953. The Permian reef complex of the Guadalupe Mountains,Texas and New Mexico:A Study in Paleoecology. [32] Riding R. 2002. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories. Earth-Science Reviews,58(1): 163-231. [33] Scrutton C T. 1997. The Palaeozoic corals,Ⅰ: Origins and relationships. In:Proceedings of the Yorkshire Geological and Polytechnic Society. Geological Society of London, 51(3): 177-208. [34] Wilson J L. 1975. Carbonate Facies in Geologic History. New York:Springer-Verlag.