Microfacies and sedimentary models of gravelly braided-river alluvial fan: A case study of modern Baiyanghe-river alluvial fan in northwestern margin of Junggar Basin
Liu Da-Wei1, 2, 3, Ji You-Liang1, Gao Chong-Long1, Jin Jun4, Yang Zhao4, Duan Xiao-Bing1, Huan Zhi-Jun1, Luo Ni-Na1
1 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249; 2 Key Laboratory of Petroleum Resources Research,Chinese Academy of Science,Beijing 100029; 3 Institute of Geology and Geophysics,Chinese Academy of Science,Beijing 100029; 4 Petro-China Xinjiang Oilfield Company,Research Institute of Experiment and Detection,Karamay 834000,Xinjiang;
Abstract:Alluvial fan coarse-grained reservoirs are characterized by fast facies change and poor continuity,which shows the complexity of the depositional environments. In this study,a modern Baiyanghe-river alluvial fan is located at the northwestern margin of the Junggar Basin,and it is studied to explore the complex sedimentary characteristics and sedimentary model of alluvial fan,by using abundant outcrop data,hydrological data and alluvial fan publications. According to the depositional mechanism,the Baiyanghe-river alluvial fan belongs to a braided river alluvial fan,with a large scale of fan area(~327.6 km2),gentle slope(4‰~7‰),abundant coarse-grained sediments and little flooding fine-grained sediments. Sixteen lithofacies are recognized in the Baiyanghe-river alluvial fan. According to the hydrodynamic differences,the forming mechanism of lithofacies are classified into five genetic types,which are debris flow,high-flow traction current,low-flow traction current,hydrostatic deposition and aeolian deposition. The constructional process of the Baiyanghe-river alluvial fan can be divided into two periods,flood period and inter-flood period. During the flood period,deposition plays a major role. From proximal to distal part of alluvial fan,six types of microfacies can be recognized,followed as feeder-channel and sheetflood deposition in proximal part,sheetflood and braided-stream deposition in intermediate part,channel and wetland deposition in distal part. However,during the inter-flood period,reworking is the major process. Three microfacies are developed form proximal part to distal part,including main-channel deposition in proximal part,braided-trench deposition in intermediate,and wetland deposition in distal. Each microfacies is in transitional contact,without obvious interface. Sedimentary models of gravelly braided-river alluvial fan were finally established based on the data of Baiyanghe-river alluvial fan.
Liu Da-Wei,Ji You-Liang,Gao Chong-Long et al. Microfacies and sedimentary models of gravelly braided-river alluvial fan: A case study of modern Baiyanghe-river alluvial fan in northwestern margin of Junggar Basin[J]. JOPC, 2018, 20(3): 435-452.
[1] 陈欢庆,舒治睿,林春燕,邓西里,刘红现. 2014. 粒度分析在砾岩储层沉积环境研究中的应用: 以准噶尔盆地西北缘某区克下组冲积扇储层为例. 西安石油大学学报(自然科学版), 29(6): 6-12. [Chen H Q,Shu Z R,Lin C Y,Deng X L,Liu H X.2014. Application of grain-size analysis in research of sedimentary of conglomerate reservoir: Taking alluvial fan reservoir in the lower member of Kelamayi Formation in some area of northwest margin of Zhunger Basin as an example. Journal of Xi’an Shiyou University(Natural Science Edition), 29(6): 6-12] [2] 陈欢庆,梁淑贤,舒治睿,邓晓娟,彭寿昌. 2015. 冲积扇砾岩储层构型特征及其对储层开发的控制作用: 以准噶尔盆地西北缘某区克下组冲积扇储层为例. 吉林大学学报(地球科学版), 45(1): 13-24. [Chen H Q,Liang S X,Shu Z R,Deng X J,Peng S C.2015. Characteristics of conglomerate reservoir architecture of alluvial fan and its controlling effects to reservoir development: Taking alluvial fan reservoir in some are of northwest margin of Junggar Basin as an example. Journal of Jilin University(Earth Science Edition), 45(1): 13-24] [3] 冯文杰,吴胜和,徐长福,夏钦禹,伍顺伟,黄梅,景亚菲. 2015a. 冲积扇储层串流通道及其控制的剩余油分布模式: 以克拉玛依油田一中区克拉玛依组为例. 石油学报, 36(7): 859-870. [Feng W J,Wu S H,Xu C F,Xia Q Y,Wu S W,Huang M,Jing Y F.2015a. Water flooding channel of alluvial fan reservoir and its controlling distribution pattern of remaining oil: A case study of Triassic Lower Karamay Formation,Yizhong area,Karamay oilfield,NW China. Acta Petroloei Sinica, 36(7): 859-870] [4] 冯文杰,吴胜和,夏钦禹,李俊飞,伍顺伟. 2015b. 基于地质矢量信息的冲积扇储层沉积微相建模: 以克拉玛依油田三叠系克下组为例. 高校地质学报, 21(3): 449-460. [Feng W J,Wu S H,Xia Q Y,Li J F,Wu S W.2015b. Micro-facies modeling of alluvial fan reservoir based on geological vector information: A case study on the Triassic Lower Karamay Formation,Yizhong area,Karamay oilfield,NW China. Geological Journal of China Universities, 21(3): 449-460] [5] 胡杨,郭峰,刘见宝,袁亚娟. 2011. 和什托洛盖盆地构造演化及油气成藏条件. 西南石油大学学报(自然科学版), 33(5): 68-74. [Hu Y,Guo F,Liu J B,Yuan Y J.2011. Analysis of tectonic evolution and oil-gas reservoir formaton condition of Heshituoluogai Basin in northwest Xinjing. Journal of Southwest Petroleum University(Science & Technology Edition), 33(5): 68-74] [6] 胡杨,夏斌,郭峰,袁亚娟,施秋华,蔡嵩. 2012. 新疆和什托洛盖盆地构造演化特征及其对油气成藏的影响. 地质与资源, 21(4): 380-385. [Hu Y,Xia B,Guo F,Yuan Y J,Shi Q H,Cai S.2012. Tectonic evolution and its influence on hydrocarbon accumulation of Heshituoluogai in northwest Xinjiang. Geology and Resources, 21(4): 380-385] [7] 吕辉河. 2013. 新疆西准噶尔白杨河流域地貌特征及演化分析. 鲁东大学硕士学位论文,13-20. [Lü H H. 2013. Analysis of Geomorphic Features and Evolution of Baiyanghe River in West Junggar,Xinjiang,China. Master’s Thesis of Ludong University,13-20] [8] 王怀涛. 2011. 新疆北部吾尔喀什尔山—谢米斯台山花岗岩年代学及其构造意义. 兰州大学硕士学位论文,31-38. [Wang H T.2011. Geochronology and Tectonic Implications of Wuerkashier—Ximisitai,North China. Master’s Thesis of Lanzhou University,31-38] [9] 吴胜和,纪友亮,岳大力,印森林. 2013. 碎屑沉积地质体构型分级方案探讨. 高校地质学报, 19(1): 12-22. [Wu S H,Ji Y L,Yue D L,Yin S L.2013. Dicussion on hierarchical scheme of architectural units in clastic deposits. Geological Journal of China University, 19(1): 12-22] [10] 吴胜和,冯文杰,印森林,喻宸,张可. 2016. 冲积扇沉积构型研究进展. 古地理学报, 18(4): 497-512. [Wu S H,Feng W J,Yin S L,Yu C,Zhang K.2016. Research advances in alluvial fan depositional architecture. Journal of Palaeogeography(Chinese Edition), 18(4): 497-512] [11] 印森林,胡张明,郑丽君,吴胜和,刘岩. 2015. 第四纪昌平冲积扇沉积特征研究. 中国科技论文, 10(15): 1828-1833. [Yin S L,Hu Z M,Zheng L J,Wu S H,Liu Y.2015. Sedimentary features of the Quaternary Changping alluvial fan. China Sciencepaper, 10(15): 1828-1833] [12] 张纪易. 1985. 粗碎屑洪积扇的某些沉积特征和微相划分. 沉积学报, 3(3): 75-85. [Zhang J Y.1985. Some depositional characteristics and microfacies subdivision of coarse clastic alluvial fans. Acta Sedimetologica Sinica, 3(3): 75-85] [13] 郑占,吴胜和,许长福,岳大力,王伟,王锋. 2010. 克拉玛依油田六区克下组冲积扇岩石相及储层质量差异. 石油与天然气地质, 31(4): 463-471. [Zheng Z,Wu S H,Xu C F,Yue D L,Wang W,Wang F.2010. Lithofacies and reservoirs of alluvial fan in the lower Keramay Formation in the block-6 of Karamay oilfield,the Junggar Basin. Oil & Gas Geology, 31(4): 463-471] [14] 朱筱敏. 2008. 沉积岩石学. 北京: 石油工业出版社,248-256. [Zhu X M.2008. Sedimentary Petrology. Beijing: Petroleum Industry Press,248-256] [15] Blair T C.1999a. Sedimentary processes and facies of the waterlaid Anvil Spring Canyon alluvial fan,Death Valley,California. Sedimentology, 46: 913-940. [16] Blair T C.1999b. Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan,Death Valley,California. Sedimentology, 46: 941-965. [17] Blair T C.2000. Sedimentology and progressive tectonic unconformities of the sheetflood-dominated Hell’s Gate alluvial fan,Death Valley,California. Sedimentary Geology, 132(3): 233-262. [18] Blair T C,McPherson J G.1994. Alluvial fans and their natural distinction from rivers based on morphology,hydraulic process,sedimentary processes,and facies assemblages. Journal of Sedimentary Research, 64(3): 450-489. [19] Bok C K,Donald R L.2004. Depositional processes of the gravelly debris flow deposits,South Dolomite alluvial fan,Owens Valley,California. Geosciences Journal, 11: 471-484. [20] Cain S A,Nigel P M.2009. Spatial and temporal evolution of a terminal fluvial fan system: The Permian Organ Rock Formation,south-east Utah,USA. Sedimentology, 56(6): 1774-1800. [21] Calvo R,Ramos E.2015. Unlocking the correlation in fluvial outcrops by using a DOM-derived virtual datum: Method description and field tests in the Huesca fluvial fan,Ebro Basin(Spain). Geosphere, 11(5): 1507-1529. [22] Daniel F,Jens H,Matthias H.2015. A combined study of radar facies,lithofacies and three-dimensional architecture of an alpine alluvial fan,Illgraben fan,Switzerland. Sedimentology, 62: 57-86. [23] DeCelles P G,Gray M B,Ridgway K D,Cole R B,Pivnik D A,Pequera N, Srivastava P.1991. Controls on synorogenic alluvial-fan architecture,Beartooth Conglomerate(Palaeocene),Wyoming and Montana. Sedimentology, 38: 567-590. [24] Fidolini F,Ghinassi M,Aldinucci M,Billi P,Boaga J. Deiana R,Brivio L.2013. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin(Tuscany,Italy). Sedimentary Geology, 289: 19-39. [25] George P,Wojciech N,Karen L K.1988. Large floating clasts in turbidites: A mechanism for their emplacement. Sedimentary Geology, 58: 47-61. [26] Harvey A M.2002. The role of base-level change in the dissection of alluvial fans: Case studies from southeast Spain and Nevada. Geomorphology, 45: 67-87. [27] Hein F J,Walker R G.1977. Bar evolution and development of stratification in the gravelly,braided Kicking Horse River,British Columbia. Earth-Science Reviews, 14: 562-570. [28] Hülya A,Gonzalo J.2013. Late Miocene to Plio-Pleistocene fluvio-lacustrine system in the Karacasu Basin(SW Anatolia,Turkey): Depositional paleogeographic and paleoclimatic implications. Sedimentary Geology, 291: 62-83. [29] Jeffrey M M,Alan D H.2005. Large alluvial fans on Mars. Journal of Geophysical Research, 110(4): 1-24. [30] Jose L C M,Lluis C P,Alex M,Pau A Z,Mariano M C,Fabia B.2010. Exhumed channel sandstone networks within fluvial fan deposits from the Oligo-Miocene Caspe Formation,South-east Ebro Basin(North-east Spain). Sedimentology, 57(1): 162-189. [31] Juan F,Brian J B,Cesar V.1993. The effects of fluctuating base level on the structure of alluvial fan and associated fan delta deposits: An example from the Tertiary of the Betic Cordillera,Spain. Sedimentology,40: 879-893. [32] Kenneth D R,Peter G D.1993. Stream-dominated alluvial fan and lacustrine depositional systems in Cenozoic strike-slip basins,Denali fault system,Yukon Territory,Canada. Sedimentology, 40: 645-666. [33] Lucy E C.2015. Experimental alluvial fans: Advances in understanding of fan dynamics and processes. Geomorphology, 244: 135-145. [34] Miall A D.1985. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Science Reviews, 22: 261-308. [35] Miall A D.1996. The Geology of Fluvial Deposits. Berlin: Springer,582-583. [36] Nemec W,Steel R J.1984. Alluvial and coastal conglomerates: Their significant features amd some comments on gravelly mass-flow deposits,in E.H. Sedimentology of Gravels and Conglomerates, 10: 1-31. [37] Philip A A.1981. Sediments and processes on a small stream-flow dominated,Devonian alluvial fan,Shetland Islands. Sedimentary Geology. 29: 31-66. [38] Senlin Y,Shenghe W,Wenjie F,Junfei L,Hang Y.2013. Patterns of intercalation in alluvial fan reservoirs: A case study of Lower Karamay Formation,Yizhong Area,Karamay Oilfield,NW China. Petroleum Exploration and Development, 40(6): 811-818. [39] Shukla U K,Singh I B,Sharma M,Sharma S.2001. A model of alluvial megafan sedimentation: Ganga Megafan. Sedimentary Geology, 144: 243-262. [40] Shukla U K.2009. Sedimentation model of gravel-dominated alluvial piedmont fan,Ganga Plain,India. International Journal of Earth Sciences, 98: 443-459. [41] Stainistreet I G,McCarthy T S.1993. The Okavango Fan and the classification of subaerial fan systems. Sedimentary Geology, 85: 115-133. [42] Tjalling D H,Dario V,Patrice E C,Maaten G K.2014. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering. Geomorphology, 217: 165-181. [43] Tjalling D H,Lisanne B,Jasper R F W,Lvar R L,Maarten G K.2015a. Effects of debris flow composition on runout,depositional mechanisms,and deposit morphology in laboratory experiments. Journal of Geophysical Research: Earth Surface, 120(9): 1949-1972. [44] Tjalling D H,Maarten G K,Patrice E C,Lwna R,Ernst H.2015b. Surface morphology of fans in the high-Arctic periglacial environment of Svalbard: Controls and processes. Earth-Science Reviews, 146: 163-182. [45] Todd S P.1989. Stream-drivien,high-density gravelly traction carpets: Possible deposits in the Trabeg Conglomerate Formation,SW Ireland and theoretical considerations of their origin. Sedimentology, 36: 513-530. [46] Tunbridge I P.1984. Facies model for a sandy ephemeral stream and clay playa complex: The Middle Devonian Trentishoe Formation of north Devon,U.K. Sedimentology, 31: 697-715. [47] Waters J V,Jones S J.Armstrong H A.2010. Climatic controls on late Pleistocene alluvial fans,Cyprus. Geomorphology, 115: 228-251. [48] Weissmann G S,Hartlry A J,Scuderi L A,Nochols G J,Owen A,Wright S. Felicia A L,Holland F. Anaya F M L.2015. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250: 187-219. [49] Went D J.2005. Pre-vegetation alluvial fan facies and processes: An example from the Cambro-Ordovician Rozel Conglomerate Formation,Jersey,Channel Islands. Sedimentology, 52(4): 693-713.