Formation environment and metallogenic mechanism of Weng'an phosphorite in the Early Sinian,Central Guizhou Province
Yang Hai-Ying1,2, Xiao Jia-Fei1, Hu Rui-Zhong1, Xia Yong1, He Hong-Xi1,2
1 State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China; 2 University of Chinese Academy of Sciences,Beijing 100049,China
Abstract:Weng'an phosphorites are located at the east of Central Guizhou oldland and are important constituent of Hubei-Hunan-Guizhou phosphorite belt. Among them,the Datang ore block developed intact Early Ediacaran stratigraphic sequence,and the phosphorite occurred in the Doushantuo Formation which are divided into the lower layer of dolomite, layer A, the upper layer of dolomite, and layer B. Geochemistry showed that the P2O5 concentration of phosphorites in the layer A was higher than that of layer B,while the Sr and Mg/Ca were opposite. These characteristics indicate the degree of aridity and torridity increased from layer A to layer B. δ13C,δ18O,and Z value in layer A are -4.30‰-2.03‰, -11.30‰-7.53‰, and 112119,respectively,and those of layer B are -1.16‰1.49‰, -8.41‰-2.26‰, and 123129,respectively,indicating that the salinity increased from layer A to layer B. Ceanom of the layer A are greater than -0.1, whereas those of the layer B are less than -0.1, suggesting the redox conditions changing from anoxic to oxic. The NASC-normalized REE distribution patterns of the layer A show “left-inclining”,indicating the input of hydrothermal fluids. Furthermore,the Si,Al,and Ti content in the phosphorite and the periodical change of δ13C indicate the input of terrigenous weathering and deep seawater. The “left-inclining”REE plots,high psephicity,and intraclast and blocky textures of phosphate from the layer A collectively suggest the phosphorite formed via mechanical power of seawater. The “hat-shaped”REE plots and microbial debris of phosphate from the layer B indicate the phosphorite formed via microbially mediated accretionary growth.
Yang Hai-Ying,Xiao Jia-Fei,Hu Rui-Zhong et al. Formation environment and metallogenic mechanism of Weng'an phosphorite in the Early Sinian,Central Guizhou Province[J]. JOPC, 2020, 22(5): 929-946.
[1] 常华进,储雪蕾,冯连君,黄晶,张启锐. 2009. 氧化还原敏感微量元素对古海洋沉积环境的指示意义. 地质论评, 55(1): 91-99. [Chang H J,Chu X L,Feng L J,Huang J,Zhang Q R. 2009. Redox sensitive trace elements as paleoenvironments proxies. Geological Review, 55(1): 91-99] [2] 储雪蕾,封兰英,陈其英. 1995. 贵州开阳晚震旦世磷块岩的硫同位素组成及意义. 科学通报, 40(2): 148-150. [Chu X L,Feng L Y,Chen Q Y. 1995. Sulfur isotope and its significance of the Late Sinian phosphorites in Kaiyang District,Guizhou Province. Chinese Science Bulletin, 40(2): 148-150] [3] 邓小林,姚超美,王吉平,姜新华,杨更生. 2009. 扬子地区磷矿成矿规律. 化工矿产地质, 31(1): 1-12. [Deng X L,Yao C M,Wang J P,Jiang X H,Yang G S. 2009. Mineralized regularity of phosporite in the Yangtze area. Geology of Chemical Minerals, 31(1): 1-12] [4] 东野脉兴. 1996. 上升洋流与陆缘坻. 化工矿产地质, 18(3): 13-19. [Dongye M X. 1996. Upwelling oceanic curuents & Epicontinetal Chi. Geology of Chemical Minerals, 18(3): 13-19] [5] 东野脉兴. 2001. 扬子地块陡山沱期与梅树村期磷矿区域成矿规律. 化工矿产地质, 23(4): 193-209. [Dongye M X. 2001. Regional ore-forming regulation of phosphorite in Yangtze Massif in the times of Doushantuo and Meishucun Ages. Geology of Chemical Minerals, 23(4): 193-209] [6] 郭庆军,杨卫东,刘丛强,Harald Strauss,王兴理,赵元龙. 2003. 贵州瓮安生物群和磷矿形成的沉积地球化学研究. 矿物岩石地球化学通报, 22(3): 11-17. [Guo Q J,Yang W D,Liu C Q,Harald S,Wang X L,Zhao Y L. 2003. Sedimentary geochemistry research on the radiation of Weng'an biota and the formation of the phosphorite ore deposit,Guizhou. Bulletin of Mineralogy,Petrology and Geochemistry, 22(3): 11-17] [7] 梁天佑,常安之,张民堂,陈岩成. 1984. 细晶磷灰岩结构特征及成因机理的研究. 长春地质学院学报, 14(3): 35-45. [Liang T Y,Chang A Z,Zhang M T,Chen Y C. 1984. On the research of texture,characteristics and genetic mechanism of francolite. Journal of Changchun University of Earth Science, 14(3): 35-45] [8] 刘宝珺,许效松,罗安屏,康承林. 1987. 中国扬子地块西缘寒武纪风暴事件与磷矿沉积. 沉积学报, 5(3): 28-39. [Liu B J,Xu X S,Luo A P,Kang C L. 1987. Storm events and phosphate deposition in Cambrian on the western margin of the Yangtze Platform,China. Acta Sedimentologica Sinica, 5(3): 28-39] [9] 刘魁梧,陈其英. 1994. 磷块岩的胶结作用. 地质科学, 29(1): 62-70. [Liu K W,Chen Q Y. 1994. Cementation processes of phosphorites. Scientia Geologica Sinica, 29(1): 62-70] [10] 密文天,林丽,马叶情,王新利,任才云,周玉华. 2010. 贵州瓮安陡山沱组含磷岩系沉积序列及磷块岩的形成. 沉积与特提斯地质, 30(3): 46-52. [Mi W T,Lin L,Ma Y Q,Wang X L,Ren C Y,Zhou Y H. 2010. Sedimentary sequence of phosphatic rock series and formation of phosphorites in the Doushantuo formation in weng'an,Guizhou. Sedimentary Geology and Tethyan Geology, 30(3): 46-52] [11] 密文天,王新利,冯志强,陈安清,任才云,周玉华. 2012. 贵州瓮安陡山沱组碳同位素特征及古海洋意义. 成都理工大学学报(自然科学版), 39(3): 296-304. [Mi W T,Wang X L,Feng Z Q,Chen A Q,Ren C Y,Zhou Y H. 2012. Carbon istope characteristics and the implication for the ancient ocean evolution of Doushantuo Formation in Weng'an,Guizhou,China. Journal of Chengdu University of Technology(Science & Technology Edition), 39(3): 296-304] [12] 密文天,李德亮,冯志强,武新春,牛显. 2013. 贵州瓮安陡山沱组磷块岩的地球化学特征. 地质找矿论丛, 28(1): 101-105. [Mi W T,Li D L,Feng Z Q,Wu X C,Niu X. 2013. Research on the geochemical characteristics of phosphorites of Doushantuo Formation in Weng'an County,Guizhou. Contributions to Geology and Mineral Resources Research, 28(1): 101-105] [13] 单满生. 1987. 震旦系陡山沱组磷块岩的成岩作用和成岩环境. 长春地质学院学报, 17(2): 169-170. [Shan M S. 1987. Diagenesis and diagenetic environments of phosphorite from Doushantuo Formation,Sinian System. Journal of Changchun University of Earth Science, 17(2): 169-170] [14] 施春华. 2005. 磷矿的形成与Rodinia超大陆裂解与生物爆发的关系: 以瓮安、开阳、织金磷矿床为例. 中国科学院研究生院博士论文. [Shi C H. 2005. Formation of phosphorite deposit,breakup of Rodinia supercontinent and biology explosion: A case study of Weng'an,Kaiyang and Zhijin phosphorite deposits of Guizhou Province. Doctoral disseration of Chinese Academy of Sciences] [15] 宋明水. 2005. 东营凹陷南斜坡沙四段沉积环境的地球化学特征. 矿物岩石, 25(1): 67-73. [Song M S. 2005. Sedimentary environment geochemistry in the Shasi Section of Southern Ramp Dongying Depression. Journal of Mineralogy Petrology, 25(1): 67-73] [16] 王新强. 2010. 华南地区晚埃迪卡拉纪—早寒武世海水分层的有机碳同位素证据. 中国地质大学(北京)博士论文: 1-101. [Wang X Q. 2010. Organic carbon isotope evidence for late Ediacaran-early Cambrian ocean stratification in South China. Doctoral disseration of China University of Geosciences(Beijing): 1-101] [17] 吴凯,马东升,潘家永,聂文明,周健,夏菲,刘莉. 2006. 贵州瓮安磷矿陡山沱组地层元素地球化学特征. 东华理工学院学报, 29(2): 108-114. [Wu K,Ma D S,Pan J Y,Nie W M,Zhou J,Xia F,Liu L. 2006. The geochemistry of phosphorite of doushantuo formtion in Weng'an,China: Insights from trace elements and REE. Journal of East China Institute of Technology, 29(2): 108-114] [18] 吴祥和,韩至钧,蔡继锋,肖永连. 1999. 贵州磷块岩. 北京: 地质出版社. [Wu X H,Han Z J,Cai J F,Xiao Y L. 1999. Phosphorites in Guizhou. Beijing: Geological Publishing House] [19] 肖朝益,张正伟,何承真,温汉捷,樊海峰. 2018. 华南埃迪卡拉纪磷矿的沉积环境. 矿物岩石地球化学通报, 37(1): 121-138. [Xiao C Y,Zhang Z W,He C Z,Wen H J,Fan H F. 2018. The depositional envionment of Ediacaran phosphorite deposits,South China. Bulletin of Mineralogy,Petrology and Geochemistry, 37(1): 121-138] [20] 谢启来,陈多福,漆亮,陈先沛. 2003. 贵州瓮安陡山沱组磷块岩的稀土元素地球化学特征与沉积古环境. 矿物学报, 23(4): 289-295. [Xie Q L,Chen D F,Qi L,Chen X Q. 2003. REE geochemistry of Doushantuo phosphorites and paleoenvironmental changes in Weng'an area,South China. Acta Mineralogica Sinica, 23(4): 289-295] [21] 熊小辉,肖加飞. 2011. 沉积环境的地球化学示踪. 地球与环境, 39(3): 405-414. [Xiong X H,Xiao J F. 2011. Geochemical indicators of sedimentary environments: A summary. Earth and Environment, 39(3): 405-414] [22] 杨卫东,曾允孚. 1990. 黔中陡山沱期磷块岩成因的系统研究. 沉积学报, 8(3): 84-92. [Yang W D,Zeng Y F. 1990. Systematic research on the origin of the phosphorites of Doushantuo stage Central Guizhou,China. Acta Sedimentologica Sinica, 8(3): 84-92] [23] 杨卫东,肖金凯,于炳松,方涛,陈丰,鲁晓莺. 1997. 滇黔磷块岩沉积学、地球化学与可持续开发战略. 北京: 地质出版社,1-106. [Yang W D,Xiao J K,Yu B S,Fang T,Chen F,Lu X Y. 1997. The Sedimentology and geochemistry on Phosphorits in Yunnan and Guizhou,with Continuable Developing Strategy. Beijing: Geological Publishing House,1-106] [24] 叶德书,赵爽,陈海,钟祖峰. 2014. 贵州省瓮福磷矿沉积环境及矿床成因探讨. 矿产与地质, 28(4): 422-430. [Ye D S,Zhao S,Chen H,Zhong Z F. 2014. Sedimentary environment and deposit genesis of Wengfu phosphorus deposit in Guizhou. Mineral Resources and Geology, 28(4): 422-430] [25] 叶连俊,陈其英,刘魁梧. 1986. 工业磷块岩物理富集成矿说. 沉积学报,4(3): 1-22. [Ye L J. Chen Q Y,Liu K W. 1986. Chinese phosphorite rock. Acta Sedimentologica Sinica, 4(3): 1-22] [26] 叶连俊,陈其英,赵东旭,陈志明,陈有明,刘魁梧. 1989.中国磷块岩. 北京: 科学出版社,1-341. [Ye L J,Chen Q Y,Zhao D X,Chen Z M,Chen Y M,Liu K W. 1989. China Phosphrite Rock. Beijing: Science Press,1-341] [27] 殷纯嘏,张昀,姜乃煌. 1997. 贵州瓮安新元古代陡山沱组磷块岩中的有机化合物. 北京大学学报(自然科学版), 35(4): 509-517. [Yin C J,Zhang Y,Jiang N H. 1997. Organic matters from the fossil-bearing phosphorites of the Neoproterozoic Doushantuo Formation in Guizhou,South China. Universitatis Pekinensis(Acta Scientiarum Naturalim),35(4):509-517] [28] 殷科华,金华英,叶德书,朱成林. 2007. 福泉磨坊晚震旦世磷块岩矿床地质特征及沉积环境. 化工矿产地质, 29(4): 215-221. [Yin K H,Jin H Y,Ye D S,Zhu C L. 2007. Geologic feature and sedimentary environment of upper Sinian Mofang phosphorite deposit in Fuquan. Geology of Chemical Minerals, 29(4): 215-221] [29] 袁训来. 1999. 新元古代陡山沱期瓮安生物群研究概况. 微体古生物学报, 16(3): 281-286. [Yuan X L. 1999. A review of studies on a Neoproterozoic microfossil assemblage Weng'an biota at Weng'an,Guizhou,SW China. Acta Micropalaeontologica Sinica, 16(3): 281-286] [30] 张秀莲. 1985. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系. 沉积学报, 3(4): 17-30. [Zhang X L. 1985. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater. Acta Sedimentologica Sinian, 3(4): 17-30] [31] 张亚冠,杜远生,陈国勇,刘建中,王泽鹏,徐圆圆,谭代卫,李磊,王大福,吴文明. 2016. 黔中开阳地区震旦纪陡山沱期富磷矿沉积特征与成矿模式. 古地理学报, 18(4): 581-594. [Zhang Y G,Du Y S,Chen G Y,Liu J Z,Wang Z P,Xu Y Y,Tan D W,Li L,Wang D F,Wu W M. 2016. Sedimentary characteristics and mineralization model of high-grade phosphorite in the Sinian Doushantuo Age of Kaiyang area,central Guizhou Province. Journal of Palaeogeography (Chinese Edition), 18(4): 581-594] [32] 赵东旭. 1985. 震旦纪陡山沱组的球粒磷块岩. 岩石学报, 1(2): 41-50. [Zhao D X. 1985. Pelletal phosphorites of the Doushantuo Formation in Sinian period. Acta Petrologica Sinica, 1(2): 41-50] [33] 周传明,薛耀松,张俊明. 1998. 贵州瓮安磷矿上震旦统陡山沱组地层和沉积环境. 地层学杂志, 22(4): 308-314. [Zhou C M,Xue Y S,Zhang J M. 1998. Stratigraphy and sedimentary environment of the upper Sinian Doushantuo Formation in Weng'an phosphorite deposit,Guizhou Province. Journal of Stratigraphy, 22(4): 308-314] [34] 朱祥坤,彭干云,张仁彪,安正泽,张飞飞,闫斌,李津,高兆富,覃英,潘文. 2013. 贵州省松桃县道坨超大型锰矿地质地球化学特征. 地质学报, 87(9): 1335-1348. [Zhu X K,Peng Q Y,Zhang R B,An Z Z,Zhang F F,Yan B,Li J,Gao Z F,Qin Y,Pan W. 2013. Geological and geochemical characteristics of the Daotuo super-large manganese ore deposit at Songtao County in Guizhou Province. Acta Geologica Sinica, 87(9): 1335-1348] [35] Bau M,Möller P. 1992. Rare earth element fractionation in metamorphogenic hydrothermal calcite,magnesite and siderite. Mineralogy and Petrology, 45: 231-246. [36] Bau M,Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations,Transvaal Supergroup,South Africa. Precambrian Research, 79(1-2): 37-55. [37] Bau M,Möller P,Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56: 123-131. [38] Bowring S A,Grotzinger J P,Condon D J,Ramezani J,Newall M J,Allen P A. 2007. Geochronologic constraints on the chronostratigraphic framework of the neoproterozoic Huqf Supergroup,Sultanate of Oman. American Journal of Science, 307(10): 1097-1145. [39] Canfield D E,Poulton S W,Narbonne G M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315(5805): 92-95. [40] Cappellen P V,Berner R A. 1988. A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments: Apatite precipitation. American Journal of Science,288(4):289-333. [41] Condon D C,Zhu M Y,Samuel B,Wang W,Yang A H, Jin Y G. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation,China. Sciance, 308(5718): 95-98. [42] Cook P J. 1992. Phoshogensis around the Proterozoic-Phanerozoic transition. Journal of the Geological Society, 149(4): 615-620. [43] Fike D A,Grotzinger J P,Pratt L M,Summors R E. 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-747. [44] Haskin L A,Wildeman T R,Haskin M A. 1968. An accurate procedure for the determination of the rare earths by neutron activation. Journal of Radioanalytical Chemistry, 1(4): 337-348. [45] Henderson P. 1984. Rare Earth Element Geochemistry. Amsterdam:Elsevier Science Publishers,1-510 [46] Hoffman P F,Kaufman A J,Halverson G P,Schrag D P. 1998. A Neoproterozoic snowball earth. Science, 281: 1342-1346. [47] Hoffman P F,Halverson G P,Domack E W,Maloof A C,Swanson-Hysell N L,Cox G M. 2012. Cryogenian glaciations on the southern tropical paleomargin of Laurentia(NE Svalbard and East Greenland),and a primary Origin for the upper Russøya(Islay)carbon isotope excursion. Precambrian Research, 206: 137-158. [48] Jiang G Q,Sohl L E,Christieblick N. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya(India)and Yangtze block(south China): Paleogeographic implications. Geology, 31(10): 917-920. [49] Jiang G Q,Kaufman A J,Christie-Blick N,Zhang S H,Wu H C. 2007. Carbon isotope variability across the Ediacaran Yangtze Platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 261(1-2): 303-320. [50] Jiang G Q,Shi X Y,Zhang S H,Wang Y,Xiao S H. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation(ca. 635-551Ma)in South China. Gondwana Research, 19(4): 831-849. [51] Kaufman A J,Knoll A H. 1995. Neoproterozoic varations in the C-isotope composition of seawater-stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27-49. [52] Keith M L,Weber J N. 1964. Isotopic composition and environmental classification of selected limestones and fossils. Geochimica et Cosmochimica Acta, 23: 1786-1816. [53] Kerr A R. 2000. An appealing snowball earth that's still hard to swallow. Science, 287: 1734-1736. [54] Knoll A H,Walter M R. 1992. Latest Proterozoic stratigraphy and earth history. Nature, 356(6371): 673-678. [55] Liu Y Q,Liu Y,Tay J H. 2004. The effects of extracellular polymeric substances on the formation and stability of biogranules. Applied Microbiology and Biotechnology, 65(2): 143-148. [56] Marchig V,Gundlach H,Möller P,Schley F. 1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology, 50(3): 241-256. [57] Micheal B,Peter D. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations,Transvaal Supergroup,South Africa. Precambrian Research, 79: 37-35. [58] Murray R W,Tenbrink M R B,Jones D L,Gerlach D C,Russ G P. 1990. Rare earth elements as indicators of different marine depositional enviornments in cherts and shale. Geology, 18(3): 268-271. [59] Muscente A D,Hawkins A D,Xiao S. 2015. Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation(South China): A comparative synthesis: Palaeogeography, Palaeoclimatology, Palaeoecology, 434(4331): 46-62. [60] Och L M,Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Ervironmental perturbations and biogeochemical cycling. Earth-Science Reviews, 110: 26-57. [61] Pufahl P K,Hiatt E E. 2012. Oxygenation of the Earth's atmosphere-ocean system: A review of physical and chemical sedimentologic responses. Marine and Petroleum Geology, 32(1): 1-20. [62] Scott C,Lyones T W,Bekker A,Shen Y,Poulton S W,Chu X,Anbar A D. 2008. Tracing the stepwise oxygenation of the proterozoic ocean. Nature, 452: 456-459. [63] Shaffer G. 1986. Phosphate pumps and shuttles in the Black Sea. Nature, 321(6069): 515-517. [64] She Z,Strother P,McMahon G,Nittler L R,Wang J,Zhang J,Sang L,Ma C,Papineau D. 2013. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅰ: In situ micro-analysis of textures and composition. Precambrian Research, 235: 20-35. [65] Shen Y N,Schidlowski M,Chu X L. 2000. Biogeochemical approach to understanding phosphogenic events of the terminal Proterozoic to Cambrian. Palaeogeography,Palaeoclimatology,Palaeoecology, 158(1-2): 99-108. [66] Shimizu H,Masuda A. 1977. Cerium in chert as an indication of marine environment of its formation. Nature, 266(5600): 346-348. [67] Stout L M,Joshi S R,Kana T M,Jaisi D P. 2014. Microbial activities and phosphorus cycling: An application of oxygen isotope ratios in phosphate. Geochimica et Cosmochimica Acta, 138(1): 101-116. [68] Taylor S R,Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution,An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell: Scientific Publications,Oxford. [69] Wang Y L,Liu Y L,Schimitt A A. 1986. Rare eatrh element geochemistry of south Atlantic deep sea sediments: Ce anomaly change approximately-54 My. Geochemica et Cosmochimica Acta, 50(7): 1337-1355. [70] Wang Z G,Ding X Y,Zhao Z H. 1989. Rare Earth Element Geochemistry. Beijing: Science Press. [71] Wilde P,Quinby-Hunt M S,Erdtmann B. 1996. The whole-rock cerium anomaly: A potential indicator of eustatic sea-level change in shales of the anoxic faces. Sedimentary Geology, 101: 43-53. [72] Wright J,Schrader H,Holser W T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements infossil apatite.Geochimica et Cosmochimica Acta, 51: 631-644. [73] Xiao S H,Zhang Y,Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoie phosphorite. Nature, 391: 553-558. [74] Xue Y S,Tang T F,Yu C L,Zhou C M. 1999. Animal embryos,a misinterpretation of Neoproterozoic,mierofossils. Acta Micropalaeontologica Sinica, 16(1): 1-4. [75] Yang H Y,Xiao J F,Xia Y,Xie Z J,Tan Q P,Xu J B,Guo H Y,He S,Wu S W. 2019. Origin of the Ediacaran Weng'an and Kaiyang phosphorite deposits in the Nanhua Basin,SW China. Journal of Asian Earth Sciences, 182: 1-24.