Giant ooids induced and predominated by photosynthetic biofilms of filamentous cyanobacteria: an example from the Miaolingian Xuzhuang Formation at the Shijing section in Xin'an County of Henan Province,North China Platform
Mei Ming-Xiang1,2
1 School of Earth Sciences and Natural Resources,China University of Geosciences(Beijing),Beijing 100083,China; 2 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Beijing),Beijing 100083,China
Abstract:Diversified forming environments and 3000 million years of history clearly express that ooid is an enchanting depositional grain whose origin remains a dilemma,and its formation is still actively debated that is reflected as the strongly difference between the organic and inorganic origins of ooids. Giant ooids from the top part of the Miaolingian Xuzhuang Formation at the Shijing section in Xin'an County of Henan Province are made of calcite and show concentric,radial-concentric,and micritic fabrics. Within both the core and the cortex of these ooids there are excellent calcified residues of photosynthetic biofilms reflected as the high-density preservation of the Girvanella,which provide a relative direct evidence of ooid formation that is genetically related to the photosynthetic biofilm,since it is relatively certain that Girvanella resembles closely recent calcified Plectonema. Therefore,although the exact forming mechanism of radial-fibrous calcites making up the cortex of radial ooids in the calcite sea of the Cambrian that is marked by cayanobacterial blooms and is coincided with metazoan radiation is not wholly understand,direct evidences of that the formation of these giant ooids is dominated,nourished and promoted by photosynthetic biofilms further support an important scientific idea,i.e. ooid deposits can be understood as a new differentiated type of microbialite system. Ultimately,our finding and study provide an important example for the further understanding and elucidating of the “ooid dilemma”.
Mei Ming-Xiang. Giant ooids induced and predominated by photosynthetic biofilms of filamentous cyanobacteria: an example from the Miaolingian Xuzhuang Formation at the Shijing section in Xin'an County of Henan Province,North China Platform[J]. JOPC, 2021, 23(1): 105-124.
[1] 陈百兵,齐永安,郑伟,李小燕. 2019. 豫西宜阳地区寒武系馒头组鲕粒中的泥晶方解石特征及其成因. 古地理学报, 21(4): 603-612. [Chen B B,Qi Y A,Zheng W,Li X Y.2019. Micritic calcites in ooids and their genetic analysis from the Cambrian Mantou Formation in Yiyang area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 21(4): 603-612] [2] 代明月,齐永安,陈尧,李妲. 2014. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因. 古地理学报, 16(5): 726-734. [Dai M Y,Qi Y A,Chen Y,Li D.2014. Giant ooids and their genetic analysis form the Zhangxia Formation of Cambrian Series 3 in Mianchi area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 16(5): 726-734] [3] 冯增昭,王英华,张吉森,左文岐,张秀莲,洪国良,陈继新,吴胜和,陈玉田,迟元苓,杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 石油工业出版社,28-48. [Feng Z Z,Wang Y H,Zhang J S,Zuo W Q,Zhang X L,Hong G L,Chen J X,Wu S H,Chen Y T,Chi Y L,Yang C Y.1990. Lithofacies Paleogeography of the Early Paleozoic of North China Platform. Beijing: Petroleum Industry Press,28-48] [4] 冯增昭,彭永民,金振奎,鲍志东. 2004. 中国寒武纪和奥陶纪岩相古地理. 北京: 石油工业出版社,112-121. [Feng Z Z,Peng Y M,Jin Z K,Bao Z D.2004. Lithofacies Paleogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press,112-121] [5] 郭芪恒,金振奎,史书婷,朱小二,李硕,陈媛,王金艺. 2020. 鲕粒粒度特征及其指示意义: 以北京西山下苇甸寒武系张夏组剖面为例. 沉积学报, 38(4): 737-746. [Guo Q H,Jin Z K,Shi S T,Zhu X E,Li S,Chen Y,Wang J Y.2020. Characteristics of ooid size and its environmental significance: A case study from the Cambrian Zhangxia Formation at Xiaweidian outcrop,Beijing. Acta Sedimentologica Sinica, 38(4): 736-746] [6] 李飞,王夏,薛武强,颜佳新. 2010. 一种新的错时相沉积物: 巨鲕及其环境意义. 沉积学报, 28(3): 585-595 [Li F,Wang X,Xue W Q,Yan J X.2010. Origin and environmental significance of giant ooids in the Early Triassic: A new kind of anachronistic facie. Acta Sedimentologica Sinica, 28(3): 585-595] [7] 马永生,梅冥相,周润轩,杨文. 2017. 层序地层框架下的鲕粒滩形成样式: 以北京西郊下苇甸剖面寒武系第三统为例. 岩石学报, 33(4): 1021-1036. [Ma Y S,Mei M X,Zhou R X,Yang W.2017. Forming patterns for the oolitic bank within the sequence-stratigraphic framework: An example from the Cambrian Series 3 at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 33(4): 1021-1036] [8] 梅冥相,杨欣德. 2000. 强迫型海退及强迫型海退楔体系域: 对传统Exxon层序地层学模式的修正. 地质科技情报, 19(2): 17-21. [Mei M X,Yang X D.2000. Forced regression and forced regressive wedge system tract: Revision on traditional exxon model of sequence stratigraphy. Geological Science and Technology Information, 19(2): 17-21] [9] 梅冥相. 2008. 显生宙罕见的巨鲕及其鲕粒形态多样性的意义: 以湖北利川下三叠统大冶组为例. 现代地质, 22(5): 683-698. [Mei M X.2008. Implication for the unusual giant oolites of the Phanerozoic and their morphological diversity: A case study from the Triassic Daye Formation at the Lichuan section in Hubei Province,South China. Geoscience, 22(5): 683-698] [10] 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学的进展之一. 古地理学报, 12(5): 549-564. [Mei M X.2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition), 12(5): 549-564] [11] 梅冥相. 2012a. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. [Mei M X.2012a. Brief introduction on new advances of studies on the origin of ooids. Acta Sedimentologica Sinica, 30(1): 20-32] [12] 梅冥相. 2012b. 从生物矿化作用衍生出的有机矿化作用: 地球生物学框架下重要的研究主题. 地质论评, 58(5): 937-951. [Mei M X.2012b. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology. Geological Review, 58(5): 937-951] [13] 梅冥相,张瑞,李屹尧,接雷. 2017. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌. 岩石学报, 33(4): 1073-1093. [Mei M X,Zhang R,Li Y Y,Jie L.2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform. Acta Petrologica Sinica, 33(4): 1073-1093] [14] 梅冥相,Muhammad Riaz,孟庆芬,刘丽. 2019a. 鲕粒滩相灰岩特别的核形石灰岩帽: 以山西繁峙茶坊子剖面寒武系张夏组为例. 地质论评, 65(4): 839-856. [Mei M X,Muhammad R,Meng Q F,Liu L.2019a. Particular cap oncolitic grainstones of bank oolitic grainstones: An example from the Zhangxia formation of the Cambrian Miaolingian at the Chafangzi Section in Fanshi County of Shanxi Province,North China. Geological Review, 65(4): 839-856] [15] 梅冥相,Muhammad Riaz,刘丽,孟庆芬. 2019b. 辽东半岛复州湾剖面寒武系第二统光合作用生物膜建造的核形石. 古地理学报, 21(1): 31-48. [Mei M X,Muhammad R,Liu L,Meng Q F.2019b. Oncoids built by photosynthetic biofilms: An example from the Series 2 of Cambrian in the Liaodong Peninsula. Journal of Palaeogeography(Chinese Edition), 21(1): 31-48] [16] 梅冥相,Muhammad Riaz,刘丽,孟庆芬. 2019c. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例. 地质论评, 65(5): 1103-1122. [Mei M X,Muhammad R,Liu L,Meng Q F.2019c. Cambrian leiolites dominated by cyanobacterial mats: An example from the Furongian at the Qijiayu section in Laiyuan County of Hebei Province. Geological Review, 65(5): 1103-1122] [17] 梅冥相,Khalid Latif,刘丽,孟庆芬. 2019d. 光合作用生物膜建造的凝块: 来自于辽东半岛芙蓉统长山组凝块石微生物礁中的一些证据. 古地理学报, 21(2): 254-277. [Mei M X,Latif K,Liu L,Meng Q F.2019d. Clots built by photosynthetic biofilms: Some evidences from thrombolite bieherms of the Changshan Formation of the Cambrian Furongian in the Liaodong Peninsula. Journal of Palaeogeography(Chinese Edition), 21(2): 254-277] [18] 梅冥相,Khalid Latif,孟晓庆,胡媛. 2020a. 鲕粒滩中光合作用生物膜构建的高能核形石: 以辽西葫芦岛三道沟剖面寒武系张夏组为例. 地质学报, 94(4): 999-1016. [Mei M X,Khalid L,Meng X Q,Hu Y.2020a. High-energy oncoids within the ooid-grained bank built by photosynthetic biofilms: A case study of the Cambrian Zhangxia Formation at the Sandaogou section of Huludao City in the western part of Liaoning Province. Acta Geologica Sinica, 94(4): 999-1016] [19] 梅冥相,孟庆芬,胡媛. 2020b. 大连金州湾寒武系毛庄组微生物碳酸盐岩生物丘复合体. 地质学报, 94(2): 375-395. [Mei M X,Meng Q F,Hu Y.2020b. Bioherm complex madding up of microbial carbonates in the Cambrian Maozhuang Formation at the Jinzhouwan section in Dalian city of Liaoning Province in northeastern China. Acta Geologica Sinica, 94(2): 375-395] [20] 彭善池. 2009. 华南斜坡相寒武纪三叶虫动物群研究回顾并论中国南、北方寒武系的对比. 古生物学报, 48(3): 437-452. [Peng S C.2009. Review on the studies of Cambrian trilobite faunas from Jiangnan slope belt,south China,with notes on Cambrian correlation between south and north China. Acta Palaeontologica Sinica, 48(3): 437-452] [21] 彭善池,赵元龙. 2018. 全球寒武系第三统和第五阶“金钉子”正式落户中国. 地层学杂志, 42(3): 325-327. [Peng S C,Zhao Y L.2018. The proposed global standard stratotype-section and point(GSSP)for the conterminous base of the Miaoling series and Wuliuan stage at Balang,Jianhe,Guizhou,China was ratified by IUGS. Journal of Stratigraphy, 42(3): 325-327] [22] 齐永安,柴姝,张喜洋,代明月,王敏. 2016. 河南卫辉地区寒武系馒头组二段中的核形石及其沉积特征. 中国科技论文, 11(21): 2416-2421. [Qi Y A,Chai S,Zhang X Y,Dai M Y,Wang M.2016. Oncoid and their depositional features from the second member of Mantou Formation(Cambrian Series 3),Weihui area,Henan Province. China Science Paper, 11(21): 2416-2421] [23] 齐永安,张喜洋,代明月,王敏. 2017. 豫西寒武系微生物岩中的葛万菌化石及其微观结构. 古生物学报, 56(2): 154-167. [Qi Y A,Zhang X Y,Dai M Y,Wang M.2017. Girvanella fossils and their microstructures from Cambrian microbialites of western Henan. Acta Palaeontologica Sinica, 56(2): 154-167] [24] 宋文天,刘建波. 2020. 碳酸盐鲕粒包壳结构研究综述. 古地理学报, 22(1): 147-160. [Song T W,Liu J B.2020. A review of cortical structure of carbonate ooid. Journal of Palaeogeography(Chinese Edition), 22(1): 147-160] [25] 颜佳新,孟琦,王夏,刘志臣,黄恒,陈发篧,郭全鼎. 2019. 碳酸盐工厂与浅水碳酸盐岩台地: 研究进展与展望. 古地理学报, 21(2): 232-253. [Yan J X,Meng Q,Wang X,Liu Z C,Huang H,Chen F Y,Guo J D.2019. Carbonate factory and carbonate platform: Progress and prospects. Journal of Palaeogeography(Chinese Edition), 21(2): 232-253] [26] 章雨旭. 2001. 试论华北板块寒武纪地层的穿时性. 沉积与特提斯地质, 21(1): 78-87. [Zhang Y X.2001. Diachromism of the Cambrian strata on the North China platform. Sedimentary Geology and Tethysian Geology, 21(1): 78-87] [27] Awramik S M,Buchheim H P.2009. A giant,Late Archean lake system: The Meentheena Member(Tumbiana Formation;FortescueGroup),Western Australia. Precambrian Research, 174: 215-240. [28] Bathurst R G C.1975. Carbonate Sediments and Their Diagenesis(2nd Edition). Amsterdam: Elsevier,1-658. [29] Berner R A,Kothavala Z.2001. GEOCARB Ⅲ: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301: 182-204. [30] Berner R A,Wagonerden B J M,Ward P D.2007. Oxygen and evolution. Science, 316: 557-558. [31] Brehm U,Krumbein W E,Palinska K A.2006. Biomicrospheres generate ooids in laboratory. Geomicrobiology Journal, 23: 545-550. [32] Campbell I H,Allen C M.2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8): 554-558. [33] Castanier S,Métayer-Levrel G L,Perthuisot J.1999. Ca-carbonates precipitation and limestone genesis: The microbiogeologist point of view. Sedimentary Geology, 126: 9-23. [34] Cody R M,Noel P J.2012. Autogenic microbial genesis of middle Miocene palustrine ooids,nullarbor plain,Australia. Journal of Sedimentary Research, 82: 633-647. [35] Davies P J,Bubela B,Ferguson J.1978. The formation of ooids. Sedimentology, 25: 703-729. [36] Decho A W.2010. Overview of biopolymer-induced mineralization: What goes on in biofilms?Ecological Engineering, 36: 137-144. [37] Decho A W,Gutierrez T.2017. Microbial extracellular polymeric substances(EPSs)in ocean systems. Frontiers Microbiology, 8: 1-28. [38] Desjardins P R,Buatois L A,Pratt B R,Mángano M G.2012. Forced regressive tidal flats: Response to falling sea level in tidedominated settings. Journal of Sedimentary Research, 82: 149-162. [39] De los Ríos A,Ascaso C,Wierzchos J,Vincent W F,Quesada A.2015. Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodivers Conserv, 24: 841-863. [40] Diaz M R,Wagoner N J D,Eberli G P,Piggot A M,Zhou J,Klaus J S.2014. Functional gene diversity of oolitic sands from Great Bahama Bank. Geobiology, 12: 231-249. [41] Diaz M R,Swart P K,Eberli G P,Oehlert A M,Devlin Q,Saeid A, Altabet M A.2015. Geochemical evidence of microbial activity within ooids. Sedimentology, 62: 2090-2112. [42] Diaz M R,Eberli G P,Blackwelder P,Phillips B,Swart P K.2017. Microbially mediated organomineralization in the formation of ooids. Geology, 45: 771-774. [43] Diaz M R,Eberli G P.2019. Decoding the mechanism of formation in marine ooids: A review. Earth-Science Reviews, 190: 536-556. [44] Duguid S M A,Kyser T K,James N P,Rankey E C.2010. Microbes and ooids. Journal of Sedimentary Research, 80: 236-251. [45] Dupraz C,Reid R P,Braissant O,Decho A W, Norman R S,Visscher P T.2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96: 141-162. [46] Dupraz C,Reid R P,Visscher P T.2011. Microbialites,modern. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin: Springer,617-635. [47] Edgcomb V P,Bernhard J M,Beaudoin D,Pruss S,Welander P V,Schubotz F,Mehay S,Gillespie A L,Summons R E.2013. Molecular indicators of microbial diversity in oolitic sands of Highborne Cay,Bahamas. Geobiology, 11: 234-251. [48] Fabricius F H.1977. Origin of marine ooids and grapestones. Contribution of Sedimentology, 7: 1-113. [49] Flemming H C,Wingender J,Kjelleberg S,Steinberg P,Rice S,Szewzyk U.2016. Biofilms: An emergent form of microbial life. Nature Review-Microbiology, 14: 563-575. [50] Flügel E.2004. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application. Berlin,Heidelberg: Springer-Verlag,1-976. [51] Gerdes G,Dunajtschik-Piewak K,Riege H,Taher A G,Krumbein W E,Reineck H E.1994. Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology, 41: 1273-1294. [52] Gallagher K L,Kading T J,Braissant O,Dupraz C,Visscher P T.2012. Inside the alkalinity engine: The role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology, 10: 518-530. [53] Han Z Z,Zhan X L,Chi N J,Yu X F.2015. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonates Evaporates, 30: 373-386. [54] Hardie L A.1996. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 m.y. Geology, 24: 279-283. [55] Harris P M,Purkis S J,Ellis J.2011. Analyzing spatial patterns in modern carbonates and bodies from Great Bahama Bank. Journal of Sedimentary Research, 81: 185-206. [56] Harris P M,Purkis S,Ellis J,Swart P,Reijmer J J G.2015. Mapping bathymetry and depositional facies on Great Bahama Bank. Sedimentology, 62: 566-589. [57] Harris P,Diaz M R,Eberli G P.2019. The formation and distribution of modern ooids on Great Bahama Bank. Annual Review of Marine Science, 11: 1-26. [58] Helland-Hansen W,Gjelberg J G.1994. Conceptual basis and variability in sequence stratigraphy: A different perspective. Sedimentary Geology, 92: 31-52. [59] Helm R F,Potts M.2012. Extracellular matrix(ECM). In: Whitton B A(ed). Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands: Springer,461-480. [60] Hunt D,Tucker M E.1992. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall. Sedimentary Geology, 81: 1-9. [61] James N P.1997. The cool-water carbonate depositional realm. In: James N P,Clarke J(eds). Cool-water Carbonates. Tulsa: SEPM Society for Sedimentary Geology, 56: 1-20. [62] Johnson J H.1966. A Review of the Cambrian Algae. Col Sch Mines Q 61,Ⅰ: 1-162. [63] Kah L C,Riding R.2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35: 799-802. [64] Kahle C F J.2007. Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria,nannobacteria(?),and biofilms. Carbonates and Evaporates, 22: 10-22. [65] Kaźmierczak J,Fenchel T,Küh M,Kempe S,Kremer B,Ł?cka B and Małkowski K.2015. CaCO3 precipitation in multilayered cyanobacterial mats: Clues to explain the alternation of micrite and sparite layers in calcareous stromatolites. Life, 5: 744-769. [66] Large R R,Mukherjee I,Gregory D,Steadman J,Corkrey R,Danyushevsky L V.2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54: 485-506. [67] Lenton T M,Daines S J,Mills B J W.2018. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178: 1-28. [68] Lee H S,Chough S K.2011. Depositional processes of the Zhushadong and Mantou formations(Early to Middle Cambrian),Shandong Province,China: Roles of archipelago and mixed carbonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform. Sedimentology, 58: 1530-1572. [69] Liu L J,Wu Y S,Yang H J,Riding R.2016. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin,Northwest China: Systematics and significance. Journal of Systematic Palaeontology, 14(3): 183-210. [70] Liu W,Zhang X L.2012. Girvanella-coated grains from Cambrian oolitic limestone. Facies, 58: 779-787. [71] Mariotti G,Pruss S B,Summons R E,Newman S A,Bosak T.2018. Contribution of benthic processes to the growth of ooids on a low-energy shore in Cat Island,the Bahamas. Minerals, 8: 1-21. [72] Mei M X,Liu S F.2017. Late Triassic sequence-stratigraphic framework of the Upper Yangtze Region,South China. Acta Geologica Sinica, 91(1): 51-75. [73] Mei M X,Latif K,Mei C J,Gao J H,Meng Q F.2020. Thrombolitic clots dominated by filamentous cyanobacteria and crusts of radio-fibrous calcite in the Furongian Changshan Formation,North China. Sedimentary Geology, https://doi.org/10.1016/j.sedgeo.2019.105540. [74] Meng X H,Ge M,Tucker M E.1997. Sequence stratigraphy,sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114: 189-222. [75] Michel J, Laugié Pohl M A. Lanteaume C, Masse J P,Donnadieu Y,Borgomano J.2019. Marine carbonate factories: A global model of carbonate platform distribution. International Journal of Earth Sciences, 108: 1773-1792. [76] Mitchum R,Vail P R,Thompson S.1977. Seismic stratigraphy and global changes in sea level,part 2: The depositional sequence as the basic unit for stratigraphic analysis. In: Payton C(ed). Seismic Stratigraphy: Applications to Hydrocarbon Exploration. AAPG Memoir, 26: 53-62. [77] Nicholson H A,Etheridge R.1878. A Monograph of the Silurian Fossils of the Girvan District in Ayrshire with Special Reference to Those Contained in the‘Gray Collection’. Edinburgh: Blackwood,1-341. [78] O’Reilly S S,Mariotti G,Winter A R,Newman S A,Matys E D,McDermott F,Pruss S B,Bosak T,Summons R E,Klepac-Ceraj V.2017. Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay,the Bahamas. Geobiology, 15: 112-130. [79] Pacton M,Ariztegui D,Wacey D,Kilburn M R,Rollion-Bard C,Farah R,Vasconcelos C.2012. Going nano: A new step toward understanding the processes governing freshwater ooid formation. Geological Society of America, 40: 547-550. [80] Peng S C,Babcock L E,Cooper R A.2012. The Cambrian Period(Chapter 19). In: Gradstein F M,Ogg J G,Schmitz M D,Ogg G M(eds). The Geologic Time Scale 2012. Amsterdam: Elsevier,437-488. [81] Peters S E,Gaines R R.2012. Formation of the‘Great Unconformity' as a trigger for the Cambrian explosion. Nature, 484: 363-366. [82] Plée K,Pacton M,Ariztegui D.2010. Discriminating the role of photosynthetic and heterotrophic microbes triggering low-Mg calcite precipitation in freshwater biofilms(Lake Geneva,Switzerland). Geomicrobiology Journal, 27: 391-399. [83] Pratt B R,Raviolo M M,Bordonaro O L.2012. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera,San Juan,Argentina. Sedimentology, 59: 843-866. [84] Pufahl P K,Grimm K A.2003. Coated phosphate grains: Proxy for physical,chemical,and ecological changes in seawater. Geology, 31: 801-804. [85] Rankey E C,Reeder S L.2009. Holocene ooids of Atutaki atolls,Cook Islands,South Pacific. Geology, 37: 971-974. [86] Rankey E C,Reeder S L.2011. Holocene oolitic marine sand complexes of the Bahamas. Journal of Sedimentary Research, 81: 97-117. [87] Rankey E C,Reeder S L.2012. Tidal sands of the Bahamian archipelago. In: Davis R A,Dalrymple R W(eds). Principles of Tidal Sedimentology. Berlin: Springer-Verlag,537-565. [88] Reitner J,Aria G,Thiel V,Gautret P,Galling U,Michaelis W.1997. Organic matter in Great Salt Lake ooids(Utah,USA): first approach to a formation via organic matrices. Facies, 36: 210-219. [89] Richter D K,Neuser R D,Schreuer J,Gies H,Immenhauser A.2011. Radiaxial-fibrous calcites: a new look at an old problem. Sedimentary Geology, 239: 23-36. [90] Rickard D,Mussmann M,Steadman J A.2017. Sedimentary sulfides. Elements, 13: 119-124. [91] Riding R.1977. Calcified Plectonema (blue-green algae),a recent example of Girvanella from Aldabra Atoll. Palaeontology, 20: 33-46. [92] Riding R.1991a. Calcified cyanobacteria. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin: Springer,55-87. [93] Riding R.1991b. Cambrian calcareous cyanobacteria and algae. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin: Springer,305-334. [94] Riding R.2002. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers. Geology, 30: 31-34. [95] Riding R.2006a. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185: 229-238. [96] Riding R.2006b. Cyanobacterial calcification,carbon dioxide concentrating mechanisms,and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4: 299-316. [97] Riding R.2011. Calcified cyanobacteria. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin: Springer,211-223. [98] Riding R,Liang L Y,Lee J H,Virgone A.2019. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeography,Palaeoclimatology,Palaeoecology, 514: 135-143. [99] Sandberg P A.1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22. [100] Salama W, Aref E I,Gaupp R.2013. Mineral evolution and processes of ferruginous microbialite accretion: An example for the Middle Eocene stromatolitic and ooidal ironstones of the Bahariya depression,Western desert,Egypt. Geobiology, 11: 15-28. [101] Samanta P,Mukhopadhyay S,Eriksson P G.2016. Forced regressive wedge in the Mesoproterozoic Koldaha Shale,Vindhyan basin,Son valley,central India. Marine and Petroleum Geology, 71: 329-343. [102] Schlager W.2003. Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences, 92: 445-464. [103] Schlager W, Warrlichw G.2009. Record of sea-level fall in tropical carbonates. Basin Research, 21: 209-224. [104] Siahi M,Hofmann A,Master S,Mueller C W,Gerdes A.2017. Carbonate ooids of the Mesoarchaean Pongola Supergroup,South Africa. Geobiology, 15(6): 750-766. [105] Simone L.1981. Ooids: A review. Earth-Science Reviews, 16: 319-355. [106] Sipos A A,Domokos G,Jerolmack D J.2018. Shape evolution of ooids: A geometric model. Scientific Reports, 8: 1758. DOI: 10.1038/s41598-018-19152-0. [107] Sorby H C.1879. The structure and origin of limestones. Proceeding of Geological Society of London, 35: 5695. [108] Stal L J.2012. Cyanobacterial Mats and Stromatolites. In: Whitton B A(ed). Ecology of Cyanobacteria Ⅱ: Their Diversity in Space And Time. Netherlands: Springer,65-125. [109] Summons R E,Bird L R,Gillespie A L,Pruss S B,Roberts M,Sessions A L.2013. Lipid biomarkers in ooids from different location sand ages: Evidence for a common bacterial flora. Geobiology, 11: 420-436. [110] Sumner D A,Grotzinger J P.1993. Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids. Journal of Sedimentary Petrology, 63: 974-982. [111] Tang D,Shi X,Shi Q,Wu J,Song G,Jiang G.2015. Organomineralization in Mesoproterozoic giant ooids. Journal of Asian Earth Sciences, 107: 195-211. [112] Thorie A,Mukhopadhyay A,Banerjee T,Mazumdar P.2018. Giant ooids in a Neoproterozoic carbonate shelf,Simla Group,Lesser Himalaya,India: An analogue related to Neoproterozoic glacial deposits. Marine and Petroleum Geology, 98: 582-606. [113] Trower E J,Grotzinger J P.2010. Sedimentology,diagenesis,and stratigraphic occurrence of giant ooids in the Ediacaran Rainstorm Member Johnnie Formation,Death Valley region,California. Precambrian Research, 180: 113-124. [114] Trower E J,Lamb M P,Fischer W W.2017. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates. Earth and Planetary Science Letters, 468: 112-118. [115] Tourney J,Ngwenya B T.2014. The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386: 115-132. [116] Tucker M E,Wright V P.1990. Carbonate Sedimentology. Oxford: Blackwell Sciences,2-9. [117] Vail P R,Mitchum Jr R M,Thompson S. 1977. Seismic stratigraphy and global changes of sea level,part 3: relative changes of sea level from coastal onlap. In: Payton C E(ed). Seismic Stratigraphy: Applications to Hydrocarbon Exploration. AAPG Memoir, 26: 63-81. [118] Vologdin A G.1962. The Oldest Algae of the USSR. Moscow: USSR Academic Science Report,1-656(in Russian). [119] Wilmeth D T,Corsetti F A,Bisenic N,Dornbos S Q,Oji T,Gonchigdorj S.2015. Punctuated growth of microbial cones within early Cambrian oncoids,Bayan Gol Formation,western Mongolia. Palaios, 30: 836-845. [120] Woo J,Kim Y H,Chough S K.2019. Facies and platform development of a microbe-dominated carbonate platform: The Zhangxia Formation(Drumian,Cambrian Series 3),Shandong Province,China. Geological Journal, 54: 1993-2015. [121] Woods A D.2013. Microbial ooids and cortoids from the Lower Triassic(Spathian)Virgin Limestone,Nevada,USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments. Global and Planetary Change, 105: 91-101.