Depositional environments and formational mechanisms of the Lower Cambrian organic-rich mud/shales, north of Xingdi Fault, northeastern Tarim Basin
HU Zongquan1,2,3, GAO Zhiqian4, LIU Wangwei5, WEI Duan4
1 State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development,Beijing 100083,China; 2 SINOPEC Key Laboratory of Shale Oil/Gas Exploration & Production,Beijing 100083,China; 3 SINOPEC Petroleum Exploration and Production Research Institute,Beijing 100083,China; 4 School of Energy Resource,China University of Geosciences(Beijing),Beijing 100083,China; 5 Wuxi Branch of Petroleum Exploration and Production Research Institute,SINOPEC,Jiangsu Wuxi 214151,China
Abstract:Organic-rich mud shales are often rich in hydrocarbon resources,and their depositional environments and formational mechanisms are important bases for evaluating and predicting favorable exploration target. In this paper,the petrographic types,depositional environments,and developmental patterns of the Lower Cambrian shales to the north of the Xingdi Fault in northeastern Tarim Basin were investigated by means of outcrop description,thin section observation,and geochemical analysis. There are 10 types of lithofacies developed in the target strata in the study area: yellow-brown calcareous siltstone,gray-black siliceous shale,brown phosphatic shale,gray-black siliceous siltstone,gray-black calcareous siltstone,black siliceous shale,gray mud chert,gray argillaceous calcareous shale,gray argillaceous calcareous siltstone,and gray-black calcareous shale. The target interval can be divided into two third-order sequences(SQ1 and SQ2). The seawater was strongly to -moderately confined during the deposition period of the Xishanbulak Formation(SQ1),and basin-facies deposits of gray-black siliceous siltstone,gray-black siliceous shale,and brown phosphatic shale were mainly developed in an anaerobic-anoxic environment. The Xidashan Formation depositional period(SQ2) was characterized by moderately to -weakly confined water, depleted-anaerobic environment,and deep-water shelf dominant facies. Reduction condition is the main controlling factor of organic matter enrichment in the Lower Cambrian of northeastern Tarim Basin,while sedimentation rate is a secondary control of organic matter enrichment,and the palaeo-productivity is not necessarily related to organic matter enrichment. Hydrothermal events in the context of intrabasin tensional tectonics both control the enrichment and degradation of organic matter. The conditions for organic matter enrichment and preservation were optimal during the SQ1 period.
HU Zongquan,GAO Zhiqian,LIU Wangwei et al. Depositional environments and formational mechanisms of the Lower Cambrian organic-rich mud/shales, north of Xingdi Fault, northeastern Tarim Basin[J]. JOPC, 2023, 25(6): 1235-1256.
[1] 蔡习尧,窦丽玮,蒋华山,余腾孝,曹自成. 2014. 塔里木盆地塔东地区寒武系划分与对比. 石油实验地质, 36(5): 539-545. [Cai X Y,Dou L W,Jiang H S,Yu T X,Cao Z C. 2014. Classification and correlation of Cambrian in eastern Tarim Basin. Petroleum Geology & Experiment, 36(5): 539-545] [2] 陈尚斌,朱炎铭,王红岩,刘洪林,魏伟,罗跃,李伍,方俊华. 2010. 中国页岩气研究现状与发展趋势. 石油学报, 31(4): 689-694. [Chen S B,Zhu Y M,Wang H Y,Liu H L,Wei W,Luo Y,Li W,Fang J H. 2010. Research status and trends of shale gas in China. Acta Petrolei Sinica, 31(4): 689-694] [3] 程日辉,王璞珺,刘万洙,孙晓猛,单玄龙. 2006. 库鲁克塔格地区寒武系层序地层与发育模式. 新疆地质, 24(4): 353-360,475. [Cheng R H,Wang P J,Liu W Z,Sun X M,Shan X L. 2006. Sequence stratigraphy and models for the Cambrian in kuluketage,Xinjiang. Xinjiang Geology, 24(4): 353-360,475] [4] 冯增昭,鲍志东,吴茂炳,金振奎,时晓章. 2006. 塔里木地区寒武纪岩相古地理. 古地理学报, 8(4): 427-439. [Feng Z Z,Bao Z D,Wu M B,Jin Z K,Shi X Z. 2006. Lithofacies palaeogeography of the Cambrian in Tarim area. Journal of Palaeogeography(Chinese Edition), 8(4): 427-439] [5] 胡宗全,杜伟,朱彤,刘曾勤. 2022. 四川盆地及其周缘五峰组—龙马溪组细粒沉积的层序地层与岩相特征. 石油与天然气地质, 43(5): 1024-1038. [Hu Z Q,Du W,Zhu T,Liu Z Q. 2022. Sequence stratigraphy and lithofacies characteristics of fine-grained deposits of Wufeng-Longmaxi Formations in the Sichuan Basin and on its periphery. Oil & Gas Geology, 43(5): 1024-1038] [6] 黄鑫,蒲晓强. 2017. 热液活动对海底沉积物中有机质的影响. 广东海洋大学学报, 37(1): 117-124. [Huang X,Pu X Q. 2017. The influence of hydrothermal activities on the organic matter in sediment. Journal of Guangdong Ocean University, 37(1): 117-124] [7] 贾承造. 1999. 塔里木盆地构造特征与油气聚集规律. 新疆石油地质, 20(3): 177-183. [Jia C Z. 1999. Jia Chengzao. structural characteristics and oil/gas accumulative regularity in Tarim Basin. Xinjiang Petroleum Geology, 20(3): 177-183] [8] 贾承造,郑民,张永峰. 2014. 非常规油气地质学重要理论问题. 石油学报, 35(1): 1-10. [Jia C Z,Zheng M,Zhang Y F. 2014. Four important theoretical issues of unconventional petroleum geology. Acta Petrolei Sinica, 35(1): 1-10] [9] 姜欢. 2015. 塔里木盆地寒武系沉积相与烃源岩分布研究. 成都理工大学硕士学位论文. [Jiang H. 2015. Study of sedimentary facies and source rock's distribution of Cambrian,Tarim Basin. Masteral dissertation of Chengdu University of Technology] [10] 姜雪,程日辉,王璞珺,刘万洙. 2010. 塔里木盆地库鲁克塔格地区下寒武统西大山组深水沉积序列. 地质科技情报, 29(2): 52-57. [Jiang X,Cheng R H,Wang P J,Liu W Z. 2010. Deep-water sedimentary sequence of xidashan formation,early Cambrian in kuruktag,Tarim Basin. Geological Science and Technology Information, 29(2): 52-57] [11] 姜在兴,梁超,吴靖,张建国,张文昭,王永诗,刘惠民,陈祥. 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. [Jiang Z X,Liang C,Wu J,Zhang J G,Zhang W Z,Wang Y S,Liu H M,Chen X. 2013. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Petrolei Sinica, 34(6): 1031-1039] [12] 姜在兴,王运增,王力,孔祥鑫,杨叶芃,张建国,薛欣宇. 2022. 陆相细粒沉积岩物质来源、搬运—沉积机制及多源油气甜点. 石油与天然气地质, 43(5): 1039-1048. [Jiang Z X,Wang Y Z,Wang L,Kong X X,Yang Y P,Zhang J G,Xue X Y. 2022. Review on provenance,transport-sedimentation dynamics and multi-source hydrocarbon sweet spots of continental fine-grained sedimentary rocks. Oil & Gas Geology, 43(5): 1039-1048] [13] 孔庆莹,程日辉. 2010. 塔里木盆地孔雀河地区寒武系—下奥陶统沉积特征. 吉林大学学报(地球科学版), 40(3): 527-534. [Kong Q Y,Cheng R H. 2010. Sedimentary characteristics of cambrian-lower Ordovician sequence in peacock river area in Tarim Basin,Xinjiang,NW China. Journal of Jilin University(Earth Science Edition), 40(3): 527-534] [14] 李一凡. 2016. 黔西北地区上奥陶统至下志留统细粒沉积岩形成环境与孔隙表征. 中国地质大学(北京)博士论文. [Li Y F. 2016. Depositional environment and pore characteristics of the odorvician-silurian fine-grained sedimentary rocks,northwestern Guizhou,South China. Doctoral dissertation of China University of Geosciences] [15] 李一凡,魏小洁,樊太亮. 2021. 海相泥页岩沉积过程研究进展. 沉积学报, 39(1): 73-87. [Li Y F,Wei X J,Fan T L. 2021. A review on sedimentary processes of marine mudstones and shales. Acta Sedimentologica Sinica, 39(1): 73-87] [16] 林畅松,李思田,刘景彦,钱一雄,罗宏,陈建强,彭莉,芮志峰. 2011. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化. 岩石学报, 27(1): 210-218. [Lin C S,Li S T,Liu J Y,Qian Y X,Luo H,Chen J Q,Peng L,Rui Z F. 2011. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages. Acta Petrologica Sinica, 27(1): 210-218] [17] 刘天琳,姜振学,刘伟伟,张昆,谢雪恋,阴丽诗,黄一舟. 2018. 江西修武盆地早寒武世热液活动对有机质富集的影响. 油气地质与采收率, 25(3): 68-76. [Liu T L,Jiang Z X,Liu W W,Zhang K,Xie X L,Yin L S,Huang Y Z. 2018. Effect of hydrothermal activity on the enrichment of sedimentary organic matter at Early Cambrian in the Xiuwu Basin. Petroleum Geology and Recovery Efficiency, 25(3): 68-76] [18] 刘伟,张光亚,潘文庆,邓胜徽,李洪辉. 2011. 塔里木地区寒武纪岩相古地理及沉积演化. 古地理学报, 13(5): 529-538. [Liu W,Zhang G Y,Pan W Q,Deng S H,Li H H. 2011. Lithofacies palaeogeography and sedimentary evolution of the Cambrian in Tarim area. Journal of Palaeogeography(Chinese Edition), 13(5): 529-538] [19] 刘文,吴春明,吕新彪,杨恩林,王祥东,汪一凡,吴建亮. 2016. 库鲁克塔格早寒武世泥质岩的地球化学特征及其地质意义. 中国地质, 43(6): 1999-2010. [Liu W,Wu C M,Lü X B,Yang E L,Wang X D,Wang Y F,Wu J L. 2016. Geochemical characteristics and geological significance of Early Cambrian argillaceous rocks in Kuruk Tag,Xinjiang. Geology in China, 43(6): 1999-2010] [20] 石开波,蒋启财,刘波,潘文庆,田景春. 2017. 塔里木盆地东北缘库鲁克塔格地区寒武纪—奥陶纪沉积特征及演化. 岩石学报, 33(4): 1204-1220. [Shi K B,Jiang Q C,Liu B,Pan W Q,Tian J C. 2017. Sedimentary characteristics and evolution of Cambrian-Ordovician in Quruqtagh area,NE Tarim Basin,Xinjiang. Acta Petrologica Sinica, 33(4): 1204-1220] [21] 王招明. 2014. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律. 天然气地球科学, 25(2): 153-166. [Wang Z M. 2014. Formation mechanism and enrichment regularities of kelasu subsalt deep large gas field in kuqa depression,Tarim Basin. Natural Gas Geoscience, 25(2): 153-166] [22] 杨伟芳,杨群慧,潘安阳. 2011. Logatchev热液场附近表层沉积物中有机质的组成特征、来源及其影响因素. 海洋学研究, 29(1): 9-16. [Yang W F,Yang Q H,Pan A Y. 2011. Characteristics of organic composition and source of organic matter in surface sediments near the Logatchev hydrothermal field. Journal of Marine Sciences, 29(1): 9-16] [23] 杨赟昊,高志前,樊太亮,刘旺威. 2022. 下寒武统黑色岩系沉积环境与控烃差异: 以塔里木盆地西北缘和东北缘为例. 断块油气田, 29(1): 47-52. [Yang Y H,Gao Z Q,Fan T L,Liu W W. 2022. The differences of sedimentary environment and hydrocarbon control of Lower Cambrian black rock series: a case study of northwestern and northeastern margin,Tarim Basin. Fault-Block Oil & Gas Field, 29(1): 47-52] [24] 张光亚,刘伟,张磊,于炳松,李洪辉,张宝民,王黎栋. 2015. 塔里木克拉通寒武纪—奥陶纪原型盆地、岩相古地理与油气. 地学前缘, 22(3): 269-276. [Zhang G Y,Liu W,Zhang L,Yu B S,Li H H,Zhang B M,Wang L D. 2015. Cambrian-ordovician prototypic basin,paleogeography and petroleum of Tarim craton. Earth Science Frontiers, 22(3): 269-276] [25] 张水昌,R L WANG,金之钧,张宝民,王大锐,边立曾. 2006. 塔里木盆地寒武纪—奥陶纪优质烃源岩沉积与古环境变化的关系: 碳氧同位素新证据. 地质学报, 80(3): 459-466. [Zhang S C,Wang R L, Jin Z J,Zhang B M,Wang D R,Bian L Z. 2006. The relationship between the cambrian—Ordovician high-TOC source rock development and paleoenvironment variations in the tariam basin,western China: Carbon and oxygen isotope evidence. Acta Geologica Sinica, 80(3): 459-466] [26] 周肖贝,李江海,傅臣建,李文山,王洪浩. 2012. 塔里木盆地北缘南华纪—寒武纪构造背景及构造-沉积事件探讨. 中国地质, 39(4): 900-911. [Zhou X B,Li J H,Fu C J,Li W S,Wang H H. 2012. A discussions on the Cryogenian-Cambrian tectonic-sedimentary event and tectonic setting of northern Tarim Basin. Geology in China, 39(4): 900-911] [27] 朱如凯,李梦莹,杨静儒,张素荣,蔡毅,曹琰,康缘. 2022. 细粒沉积学研究进展与发展方向. 石油与天然气地质, 43(2): 251-264. [Zhu R K,Li M Y,Yang J R,Zhang S R,Cai Y,Cao Y,Kang Y. 2022. Advances and trends of fine-grained sedimentology. Oil & Gas Geology, 43(2): 251-264] [28] 邹才能,朱如凯,吴松涛,杨智,陶士振,袁选俊,侯连华,杨华,徐春春,李登华,白斌,王岚. 2012. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报, 33(2): 173-187. [Zou C N,Zhu R K,Wu S T,Yang Z,Tao S Z,Yuan X J,Hou L H,Yang H,Xu C C,Li D H,Bai B,Wang L. 2012. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica, 33(2): 173-187] [29] Algeo T,Lyons T. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21: 1-23. [30] Algeo T J,Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268: 211-225. [31] Algeo T J,Rowe H. 2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324-325: 6-18. [32] Aplin A C,MacQuaker J H S. 2011. Mudstone diversity: Origin and implications for source,seal,and reservoir properties in petroleum systems. AAPG Bulletin, 95: 2031-2059. [33] Bertrand P,Shimmield G,Martinez P,Grousset F,Jorissen F,Paterne M,Pujol C,Bouloubassi I,Menard P B,Peypouquet J P,Beaufort L,Sicre M A,Lallier-Verges E,Foster J M,Ternois Y. 1996. The glacial ocean productivity hypothesis: the importance of regional temporal and spatial studies. Marine Geology, 130: 1-9. [34] Brumsack H J. 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography,Palaeoclimatology,Palaeoecology, 232: 344-361. [35] Calvert S E,Pedersen T F. 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113: 67-88. [36] Calvert S E. 1987. Oceanographic controls on the accumulation of organic matter in marine sediments. Geological Society,London,Special Publication, 26: 137-151. [37] Caplan M L,Bustin R M,Grimm K A. 1996. Demise of a Devonian-Carboniferous carbonate ramp by eutrophication. Geology, 24: 715-718. [38] Cocks L R M. 2001. Ordovician and Silurian global geography: presidential Address,delivered 3 May 2000. Journal of the Geological Society, 158: 197-210. [39] Douville E,Bienvenu P,Charlou J L,Donval J P,Fouquet Y,Appriou P,Gamo T. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63: 627-643. [40] Dymond J,Suess E,Lyle M. 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7: 163-181. [41] Francois R,Honjo S,Manganini S,Ravizza G. 1995. Biogenic Barium fluxes to the deep sea: implications for paleoproductivity reconstruction. Global Biogeochemical Cycles, 9: 289-303. [42] Hu Z Q,Gao Z Q,Liu Z B,Jiang W,Wei D,Li Y. 2022. Characteristics of Cambrian tectonic-lithofacies paleogeography in China and the controls on hydrocarbons. Journal of Petroleum Science and Engineering, 214: 110473. [43] Gao Z Q,Shi J Y,Lü J L,Chang Z. 2022. High-frequency sequences,geochemical characteristics,formations,and distribution predictions of the lower Cambrian Yuertusi Formation in the Tarim Basin. Marine and Petroleum Geology, 146: 105966. [44] Laskar J,Robutel P,Joutel F,Gastineau M,Correia A C M,Levrard B. 2004. A long-term numerical solution for the insolation quantities oftheEarth. Astronomy & Astrophysics, 428: 261-285. [45] Lazar O R,Bohacs K M,MacQuaker J H S,Schieber J,Demko T M. 2015. Capturing key attributes of fine-grained sedimentary rocks in outcrops,cores,and thin sections: nomenclature and description guidelines. Journal of Sedimentary Research, 85: 230-246. [46] McLennan S M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry,Geophysics,Geosystems: 2. doi: 10.1029/2000GC000109. [47] Mclennan S. 1989. Rare earth elements in sedimentary rocks;influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21: 169-200. [48] McManus J,Berelson W M,Klinkhammer G P,Johnson K S,Coale K H,Anderson R F,Kumar N,Burdige D J,Hammond D E,Brumsack H J,McCorkle D C,Rushdi A. 1998. Geochemistry of Barium in marine sediments: implications for its use as a paleoproxy. Geochimica et Cosmochimica Acta, 62: 3453-3473. [49] Morford J L,Emerson S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63: 1735-1750. [50] Morris R J. 1987. The formation of organic-rich deposits in two deep-water marine environments. Geological Society,London,Special Publication, 26: 153-166. [51] Murphy A E,Sageman B B,Hollander D J,Lyons T W,Brett C E. 2000. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation,seasonal water-column mixing,and efficient biolimiting nutrient recycling. Paleoceanography, 15: 280-291. [52] Murray R W,Buchholtz Ten Brink M R,Gerlach D C,Russ G P,Jones D L. 1991. Rare earth,major,and trace elements in chert from the Franciscan Complex and Monterey Group,California: assessing REE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta, 55: 1875-1895. [53] Owen A W,Armstrong H A,Floyd J D. 1999. Rare earth elements in chert clasts as provenance indicators in the Ordovician and Silurian of the Southern Uplands of Scotland. Sedimentary Geology, 124: 185-195. [54] Pfeifer K,Kasten S,Hensen C,Schulz H D. 2001. Reconstruction of primary productivity from the Barium contents in surface sediments of the South Atlantic Ocean. Marine Geology, 177: 13-24. [55] Rimmer S M,Thompson J A,Goodnight S A,Robl T L. 2004. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeography,Palaeoclimatology,Palaeoecology, 215: 125-154. [56] Sageman B B,Murphy A E,Werne J P,Ver Straeten C A,Hollander D J,Lyons T W. 2003. A tale of shales: the relative roles of production,decomposition,and dilution in the accumulation of organic-rich strata,Middle-Upper Devonian,Appalachian Basin. Chemical Geology, 195: 229-273. [57] Schieber J. 1996. Early diagenetic silica deposition in algal cysts and spores: a source of sand in black shales? Journal of Sedimentary Research, 66: 175-183. [58] Schieber J. 2016. Mud re-distribution in epicontinental basins: exploring likely processes. Marine and Petroleum Geology, 71: 119-133. [59] Schieber J,Krinsley D,Riciputi L. 2000. Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature, 406: 981-985. [60] Stow D A V,Shanmugam G. 1980. Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology, 25: 23-42. [61] Stow D A V,Huc A Y,Bertrand P. 2001. Depositional processes of black shales in deep water. Marine and Petroleum Geology, 18: 491-498. [62] Tribovillard N,Algeo T J,Baudin F,Riboulleau A. 2012. Analysis of marine environmental conditions based onmolybdenum-uranium covariation: applications to Mesozoic paleoceanography. Chemical Geology, 324-325: 46-58. [63] Tribovillard N,Algeo T J,Lyons T,Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232: 12-32. [64] Tyson R V,Pearson T H. 1991. Modern and ancient continental shelf anoxia: an overview. Geological Society,London,Special Publications, 58: 1-24. [65] Werne J P,Sageman B B,Lyons T W,Hollander D J. 2002. An integrated assessment of a “type euxinic”deposit: evidence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation. American Journal of Science, 302: 110-143. [66] Wignall P B,Twitchett R J. 1996. Oceanic Anoxia and the end Permian mass extinction. Science, 272: 1155-1158. [67] Wignall P B. 1991. Model for transgressive black shales? Geology, 19: 167-170. [68] Wortmann U G,Hesse R,Zacher W. 1999. Major element analysis of cyclic black shales: paleoceanographic implications for the Early Cretaceous deep western tethys. Paleoceanography, 14: 525-541. [69] Xu Z Q,He B Z,Zhang C L,Zhang J X,Wang Z M,Cai Z H. 2013. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples. Precambrian Research, 235: 150-162.