Organic matter enrichment law of lacustrine shale constrained by high resolution cyclostratigraphy: a case study from the lower sub-member of Member 3 of Paleogene Shahejie Formation,Dongying sag
1 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing), Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083,China
Abstract:The precise prediction of organic matter,which is closely related to palaeoclimate and palaeoenvironment,is the core and difficulty of petroleum geology research. In this study,cyclic stratigraphy and geochemical techniques were used to identify the high-frequency cyclic strata and analyze the palaeoenvironment,palaeoclimate,organic matter geochemistry and mineralogy of the lower sub-member of Member 3 of Shahejie Formation($Es_{3}^{L}$)in Well FY1,Dongying sag. The results show that: (1)Two 1.2 Ma long-term obliquity cycles,five 400 ka long eccentricity cycles,21 short eccentricity cycles of 96 ka,42 obliquity cycles of 51 ka and 103 precession cycles of 19 ka are identified in the $Es_{3}^{L}$ of the Paleogene in Dongying sag. Combined with the previous research results,based on the waveform curves of 1.2 Ma,400 ka and 96 ka,two long-term,six medium-term and 21 short-term base-level cycles were identified. (2)The correlation between the depositional environment of $Es_{3}^{L}$ and TOC data indicates a synchronization between palaeoclimate evolution and organic matter enrichment,which are controlled by the astronomical cycle. During the long obliquity or long eccentricity increased period,the climate become warmer and result in a raised base-level,enhanced reduced environment and favorable environment for organic matter accumulation. (3)The degree of organic matter enrichment depends mainly on the palaeo-productivity controlled by the wet climate and preservation condition controlled by paleo-lake depth. The long-term and medium-term scale cycle has a dominated control on organic matter enrichment. Therefore,the waveform curve of the long-term and medium-term scale cycle can be used to reconstruct the palaeoenvironment and locate the rich organic matter layer.
ZHOU Jinghao,XIAN Benzhong,ZHANG Jianguo et al. Organic matter enrichment law of lacustrine shale constrained by high resolution cyclostratigraphy: a case study from the lower sub-member of Member 3 of Paleogene Shahejie Formation,Dongying sag[J]. JOPC, 2022, 24(4): 759-770.
[1] 陈果. 2019. 滨浅湖细粒沉积烃源岩有机质富集机理研究:以鄂尔多斯盆地盐池—定边地区长7段烃源岩为例. 中国石油大学(北京)博士毕业论文: 1-143. [Chen G.2019. Organic matter enrichment of fine-grained source rock in shallow lake facies: an example from Chang 7 unit source rock in Yanchi-Dingbian Area. Doctoral dissertation of China University of Petroleum,Beijing: 1-143] [2] 胡涛,庞雄奇,姜福杰,王琦峰,徐田武,吴冠昀,蔡哲,于吉旺. 2021. 陆相断陷咸化湖盆有机质差异富集因素探讨: 以东濮凹陷古近系沙三段泥页岩为例. 沉积学报, 39(1): 140-152. [Hu T,Pang X Q,Jiang F J,Wang Q F,Xu T W,Wu G J,Cai Z,Yu J W.2021. Factors controlling differential enrichment of organic matter in saline lacustrine rift basin: a case study of the third member Shahejie Fm in Dongpu depression. Acta Sedimentologica Sinica, 39(1): 140-152] [3] 黄春菊. 2014. 旋回地层学和天文年代学及其在中生代的研究现状. 地学前缘, 21(2): 48-66. [Huang C J.2014. The current status of cyclostratigraphy and astrochronology in the Mesozoic. Earth Science Frontiers, 21(2): 48-66] [4] 姜在兴,张文昭,梁超,王永诗,刘惠民,陈祥. 2014. 页岩油储层基本特征及评价要素. 石油学报, 35(1): 184-196. [Jiang Z X,Zhang W Z,Liang C,Wang Y S,Liu H M,Chen X.2014. Characteristics and evaluation elements of shale oil reservoir. Acta Petrolei Sinica, 35(1): 184-196] [5] 金之钧,范国章,刘国臣. 1999. 一种地层精细定年的新方法. 地球科学, 24(4): 379-382. [Jin Z J,Fan G Z,Liu G C.1999. A new method for accurate dating of strata. Earth Science, 24(4): 379-382] [6] 黎茂稳,马晓潇,蒋启贵,李志明,庞雄奇,张采彤. 2019. 北美海相页岩油形成条件、富集特征与启示. 油气地质与采收率, 26(1): 13-28. [Li M W,Ma X X,Jiang Q G,Li Z M,Pang X Q,Zhang C T.2019. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America. Petroleum Geology and Recovery Efficiency, 26(1): 13-28] [7] 刘惠民,王勇,杨永红,张顺. 2020. 东营凹陷细粒混积岩发育环境及其岩相组合: 以沙四上亚段泥页岩细粒沉积为例. 地球科学, 45(10): 3543-3555. [Liu H M,Wang Y,Yang Y H,Zhang S.2020. Sedimentary environment and lithofacies of fine-grained hybrid sedimentary in Dongying sag: a case of fine-grained sedimentary system of the Es4. Earth Science, 45(10): 3543-3555] [8] 刘建平. 2016. 东营凹陷沙三段中亚段深水层序地层与岩性圈闭预测. 中国石油大学(北京)硕士毕业论文: 1-74. [Liu J P.2016. Deep-water Sequence Stratigraphy and Prediction of Litho-traps distribution in the Middle Sub-member of 3rd Member,Shahejie Formation,Dongying depression. Masteral dissertation of China University of Petroleum,Beijing: 1-74] [9] 毛凯楠,解习农,徐伟,康波. 2012. 基于米兰科维奇理论的高频旋回识别与划分: 以琼东南盆地梅山组和三亚组地层为例. 石油实验地质, 34(6): 641-647. [Mao K N,Xie X N,Xu W,Kang B.2012. Identification and division of high-frequency cycles based on Milakovitch theory: a case study on Miocene Sanya and Meishan Formations in Qiongdongnan Basin. Petroleum Geology & Experiment, 34(6): 641-647] [10] 逄淑伊,操应长,梁超. 2019. 渤海湾盆地东营凹陷沙四上亚段—沙三下亚段岩相特征及沉积环境: 以樊页1井为例. 石油与天然气地质, 40(4): 799-809. [Pang S Y,Cao Y C,Liang C.2019. Lithofacies characteristics and sedimentary environment of $Es_{s}^{U}$: a case study of Well FY1 in Dongying sag,Bohai Bay Basin. Oil & Gas Geology, 40(4): 799-809] [11] 盛文波,操应长,刘晖,张宇. 2008. 东营凹陷古近纪控盆断层演化特征及盆地结构类型. 石油与天然气地质, 29(3): 290-296. [Sheng W B,Cao Y C,Liu H,Zhang Y.2008. Evolutionary characteristics of the Paleogene basin controlling boundary faults and types of basin architectures in the Dongying sag. Oil & Gas Geology, 29(3): 290-296] [12] 石巨业. 2018. 东营凹陷始新世泥页岩段米氏旋回识别及其环境响应研究. 中国地质大学(北京)博士毕业论文: 1-132. [Shi J Y.2018. Recognition of Milankovitch cycles in the Eocene terrestrial formation and environmental responses in Dongying sag. Doctoral dissertation of China University of Geosciences,Beijing: 1-132] [13] 石巨业,金之钧,刘全有,黄振凯,张瑞. 2019. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分. 石油与天然气地质, 40(6): 1205-1214. [Shi J Y,Jin Z J,Liu Q Y,Huang Z K,Zhang R.2019. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory. Oil & Gas Geology, 40(6): 1205-1214] [14] 孙善勇,刘惠民,操应长,张顺,王勇,杨万芹. 2017. 湖相深水细粒沉积岩米兰科维奇旋回及其页岩油勘探意义:以东营凹陷牛页1井沙四上亚段为例. 中国矿业大学学报, 46(4): 846-858. [Sun S Y,Liu H M,Cao Y C,Zhang S,Wang Y,Yang W Q.2017. Milankovitch cycle of lacustrine deep water fine-grained sedimentary rocks and its significance to shale oil: a case study of the upper Es4 member of well NY1 in Dongying sag. Journal of China University of Minig & Technology, 46(4): 846-858] [15] 王智. 2018. 沾化凹陷沙三下亚段页岩油富集主控因素及临界条件. 中国石油大学(北京)硕士毕业论文: 1-69. [Wang Z.2018. The main controlling factors and critical conditions of shale oil enrichment in the lower Es3,Zhanhua sag. Masteral dissertation of China University of Petroleum(Beijing): 1-69] [16] 翁雪波. 2017. 旋回地层学的地层划分方法. 当代化工研究,(8): 57-58. [Weng X B.2017. Stratigraphic division method of cyclic stratigraphy. Chenmical Intermediate,(8): 57-58] [17] 吴怀春,张世红,冯庆来,方念乔,杨天水,李海燕. 2011. 旋回地层学理论基础、研究进展和展望. 地球科学(中国地质大学学报), 36(3): 409-428. [Wu H C,Zhang S H,Feng Q L,Fang N Q,Yang T S,Li H Y.2011. Theoretical basis,research advancement and prospects of Cyclostratigraphy. Earth Science: Journal of China University of Geosciences, 36(3): 409-428] [18] 肖强,张廷山,张喜,李红佼,雍锦杰,刘宇龙,李潇雨. 2021. 川南五峰组—龙马溪组有机质富集规律—基于旋回地层学的研究. 海相油气地质, 26(2): 105-112. [Xiao Q,Zhang T S,Zhang X,Li H J,Yong J J,Liu Y L,Li X Y.2021. Organic matter enrichment in Wufeng Formation-Longmaxi Formation in southern Sichuan: a study based on cyclic stratigraphy. Marine Origin Petroleum Geology, 26(2): 105-112] [19] 姚益民,修申成,魏秀玲,孟松梅,业渝光,刁少波. 2002. 东营凹陷下第三系ESR测年研究. 油气地质与采收率, 9(2): 31-34. [Yao Y M,Xiu S C,Wei X L,Meng S M,Ye Y G,Diao S B.2002. Researches on the ESR geochronometry in Paleogene of Dongying depression. Petroleum Geology and Recovery Efficiency, 9(2): 31-34] [20] 张慧芳,吴欣松,王斌,段云江,屈洋,陈德飞. 2016. 陆相湖盆沉积有机质富集机理研究进展. 沉积学报, 34(3): 463-477. [Zhang H F,Wu X S,Wang B,Duan Y J,Qu Y,Chen D F.2016. Research progress of the enrichment mechanism of sedimentary organics in lacustrine basin. Acta Sedimentologica Sinica, 34(3): 463-477] [21] 张廷山,彭志,杨巍,马燕妮,张洁. 2015. 美国页岩油研究对我国的启示. 岩性油气藏, 27(3): 1-10. [Zhang T S,Peng Z,Yang W,Ma Y N,Zhang J.2015. Enlightenments of American shale oil research towards China. Lithologic Reservoirs, 27(3): 1-10] [22] 张喜,张廷山,赵晓明,祝海华,MIHAI Emilian Popa,陈雷,雍锦杰,肖强,李红佼. 2021. 天文轨道周期及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响. 石油勘探与开发, 48(4): 732-744. [Zhang X,Zhang T S,Zhao X M,Zhu H H,MIHAI Emilian Popa,Chen L,Yong J J,Xiao Q,Li H J.2021. Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician-Early Silurian in the Upper Yangtze area,South China. Petroleum Exploration and Development, 48(4): 732-744] [23] 赵文智,胡素云,侯连华,杨涛,李欣,郭彬程,杨智. 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. [Zhao W Z,Hu S Y,Hou L H,Yang T,Li X,Guo B C,Yang Z.2020. Types and resource potential of continental shale oil in China and its boundary with tight oil. Petroleum Exploration and Development, 47(1): 1-10] [24] 赵贤正,周立宏,蒲秀刚,金凤鸣,韩文中,肖敦清,陈世悦,时战楠,张伟,杨飞. 2018. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破: 以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例. 石油勘探与开发, 45(3): 361-372. [Zhao X Z,Zhou L H,Pu X G,Jin F M,Han W Z,Xiao D Q,Chen S Y,Shi Z N,Zhang W,Yang F.2018. Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: a case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong sag,Bohai Bay Basin,China. Petroleum Exploration and Development, 45(3): 361-372] [25] 郑荣才,彭军,吴朝容. 2001. 陆相盆地基准面旋回的级次划分和研究意义. 沉积学报, 19(2): 249-255. [Zheng R C,Peng J,Wu C R.2001. Grade division of base-level cycles of terrigenous basin and its implications. Acta Sedimentologica Sinica, 19(2): 249-255] [26] Laskar J,Robutel P,Joutel F,Gastineau M,Correia A,Levrard B.2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428(1): 261-285. [27] Laskar J,Fienga A,Gastineau M,Manche H.2011. La2010: a new orbital solution for the long-term motion of the Earth. Astronomy & Astrophysics, 532(2): 784-785. [28] Li M S,Hinnov L,Kump L.2019. Acycle: time-series analysis software for paleoclimate research and education. Computers and Geosciences, 127: 12-22. [29] Li M S,Kump L R,Hinnov L A,Mann M E.2018. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing. Earth and Planetary Science Letters, 501: 165-179. [30] Li Q,Wu S H,Xia D L,You X L,Zhang H M,Lu H.2020. Major and trace element geochemistry of the lacustrine organic-rich shales from the Upper Triassic Chang 7 Member in the southwestern Ordos Basin,China: implications for paleoenvironment and organic matter accumulation. Marine and Petroleum Geology, 111: 852-867. [31] Liu J P,Xian B Z,Ji Y L,Gong C L,Wang J H,Wang Z,Chen P,Song D L,Wei W Z,Zhang X M,Dou L X.2020. Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: the Eocene Dongying Depression,Bohai Bay Basin,east China. Marine and Petroleum Geology, 114: 104197. [32] Wang J P,Bulot L G,Taylor K G,Redfern J.2021. Controls and timing of Cenomanian-Turonian organic enrichment and relationship to the OAE2 event in Morocco,North Africa. Marine and Petroleum Geology, 128: 105013. [33] Weedon G.2003. Time-Series Analysis and Cyclostratigraphy. Cambridge University Press,Cambridge. [34] Zhao P Q,Ma H L,Rasouli V,Liu W H,Cai J C,Huang Z H.2017. An improved model for estimating the TOC in shale formations. Marine and Petroleum Geology, 83: 174-183.