Discussion on research advances and hot issues in diagenesis of clastic-rock reservoirs
Luo Jing-Lan1, Li Chi1, Lei Chuan2, Cao Jiang-Jun1, Song Kun-Peng1
1. State Key Laboratory of Continental Dynamics/Department of Geology, Northwest University, Xi, an 710069, China; 2. Section of Science and Technology, Chang, an University, Xi, an 710018, China
Abstract:The research on diagenesis of clastic-rock reservoir is developing rapidly in recent ten years. Thus, it is of great significance in academic and scientific exploration to summarize the domestic and international research progress and the key issues of frontier research on diagenesis. The research progress, main achievement and recognition in diagenesis of clastic-rock reservoirs in recent years is discussed, and the hot issues or developing trend of diagenesis in the future is probed in this paper, on the basis of summarizing the previous research results and understanding, combined with the typical research examples at home and abroad. It is believed that great progress was obtained in provenance and parent rock constraints on sandstone types and their diagenetic evolution pathways, impact of fluid-rock interaction and its product on diagenesis, influence of thermodynamics and overpressure background on diagenesis and pore development, the timing sequence between hydrocarbon accumulation and filling process and the sandstone reservoir becoming low permeability-densification. At present, diagenetic research is developing in direction of the spatial and temporal dynamics and quantitative evolution mechanistic and diagenetic system controlled by the basin fluid dynamics, thermal dynamic processes, combining the micro-scale diagenesis research with the basin macroscopic background such as sedimentation from the source to the basin, burial history, hydrocarbon maturity and charge into reservoirs, tectonic evolution and fluid activity, and fluid and rock interaction.The aim of this paper is to induce the academic peers and experts in diagenesis and the related research fields to come forward with their valuable contributions, to cooperate and work together and joint efforts on the research exquisite, profundity and breadth of diagenesis, and application of the most advanced analytical measurement techniques and methods, as well as integration and infiltration of multidisciplinary, in order to promote the course of the clastic-rock reservoir diagenetic research in China.
Luo Jing-Lan,Li Chi,Lei Chuan et al. Discussion on research advances and hot issues in diagenesis of clastic-rock reservoirs[J]. JOPC, 2020, 22(6): 1021-1040.
[1] 陈红汉. 2014. 单个油包裹体显微荧光特性与热成熟度评价. 石油学报, 35(3): 584-590. [Chen H H.2014. Microspector fluorimetric characterization and thermal maturity assessment of individual oil inclusion. Acta Petrolei Sinica, 35(3): 584-590] [2] 代军治,高菊生,钱壮志,张龙斌,周金隆,李平,高毅. 2018. 小秦岭镰子沟金矿床地质特征、黄铁矿原位硫同位素组成及成因意义. 吉林大学学报(地球科学版), 48(6): 669-682. [Dai J Z,Gao J S,Qian Z Z,Zhang L B,Zhou J L,Li P,Gao Y.2018. Geological characteristics and S I sotopic compositions of pyrite from Lianzigou gold deposit in Xiaoqinling Area,and its genetic significance. Journal of Jilin University(Earth Science Edition), 48(6): 669-682] [3] 丁波,刘红旭,李平,张虎军,张宾,潘澄雨,张晓. 2018. 伊犁盆地蒙其古尔铀矿床含矿砂岩成岩蚀变特征及其有机—无机流体成岩成矿效应. 地质论评, 64(1): 149-164. [Ding B,Liu H X,Li P,Zhang H J,Zhang B,Pan D Y,Zhang X.2018. The feature of diagenetic alteration of ore-bearing sandstone in Mengqiguer uranium deposits,Ili Basin,and the effect of diagenetic and mineralization of its organic-inorganic fluid. Geological Review, 64(1): 149-164] [4] 董冬冬,孙运宝,吴时国. 2015. 珠江口盆地深水区地层超压演化的数值模拟:以ODP1148站位为例. 海洋地质与第四纪地质, 35(5): 165-172. [Dong D D,Sun Y B,Wu S G.2015. Numerical Simulation of The overpressure in the deep-water area of the Pearl Mouth Basin,Northern South China Sea: A case of Site 1148,ODP Leg 184. Marine Geology & Quaternary Geology, 35(5): 165-172] [5] 段威,罗程飞,刘建章,田金强,吕波,丁亮. 2015. 莺歌海盆地LD区块地层超压对储层成岩作用的影响及其地质意义. 地球科学: 中国地质大学学报,40(9): 1517-1528. [Duan W,Luo C F,Liu J Z,Tian J Q,Lü B,Ding L.2015. Effect of overpressure formation on reservoir diagenesis and its geological significiance to LD Block of Yinggehai Basin. Earth Science: Journal of China University of Geosciences, 40(9): 1517-1528] [6] 范昌育,王震亮,王爱国,张骁,张永庶,孔红喜. 2015. 柴达木盆地北缘鄂博梁构造带超压形成机制与高压气、水层成因. 石油学报, 36(6): 699-706,714. [Fan C Y,Wang Z L,Wang A G,Zhang X,Zhang Y S,Kong H X.2015. Mechanisms for overpressure generation and origin of overpressured gas and aquifer layers,Eboliang Structure Belt,northern Qaidam Basin. Acta Petrolei Sinica, 36(6): 699-706,714] [7] 冯佳睿,高志勇,崔京钢,周川闽. 2018. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价—埋藏方式制约下的成岩物理模拟实验研究. 地球科学进展, 33(3): 305-320. [Feng J R,Gao Z Y,Cui J G,Zhou C M.2018. Reservoir porosity evolution characteristics and evaluation of the Jurassic deep reservoir from Dibei in Kuqa depression: Insight from diagenesis modeling experiments under the influence of burial mode. Advances in Earth Science, 33(3): 305-320] [8] 冯增昭. 1993. 沉积岩石学(上册). 第二版. 北京: 石油工业出版社. [Feng Z Z. 1993. Sedimentary Petrology(Volume Ⅰ). Second Edition. Beijing: Petroleum Industry Press] [9] 耿明会,关永贤,宋海斌,陈江欣. 2014. 南海北部天然气渗漏系统地球物理初探. 海洋学研究, 32(2): 46-52. [Geng M H,Guan Y X,Song H B,Chen J X.2014. Preliminary geophysical studies of the natural gas seepage systems in the Northern South China Sea. Journal of Marine Sciences, 32(2): 46-52] [10] 何登发,马永生,刘波,蔡勋育,张义杰,张健. 2019. 中国含油气盆地深层勘探的主要进展与科学问题. 地学前缘, 26(1): 1-20. [He D F,Ma Y S,Liu B,Cai X Y,Zhang Y J,Zhang J.2019. Main advances and key issues for deep-seated exploration in petroliferous basins in China. Earth Science Frontiers, 26(1): 1-20] [11] 侯高峰,纪友亮,吴浩,李淋淋,王永诗,王伟. 2017. 物理模拟法定量表征碎屑岩储层物性影响因素. 地质科技情报, 36(4): 153-159. [Hou G F,Ji Y L,Wu H,Li L L,Wang Y S,Wang W.2017. Quantiative characterization on the influence factors of porosity and permeability characteristics of clastic reservoirs by physical experiment simulation. Geological Science and Technology Information, 36(4): 153-159] [12] 胡贺伟,李慧勇,于海波,肖述光,徐伟. 2020. 渤海湾盆地埕北低凸起及围区古近系 “源-汇”系统控砂原理定量分. 古地理学报, 22(2): 266-277. [Hu H W,Li H Y,Yu H B,Xiao S G,Xu W.2020. Quantitative analysis of source-to-sink system controls on sand-body distribution of the Paleogene in Chengbei low uplift and surrounding areas,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 22(2): 266-277] [13] 郇金来,漆智,杨朝强,吴倩,甘永年,王瑞丽. 2016. 莺歌海盆地东方区黄流组一段储层成岩作用机理及孔隙演化. 地质科技情报, 35(1): 87-93. [Huan J L,Qi Z,Yang C Q,Wu Q,Gan Y N,Wang R L.2016. Diagenesis mechanism and porosity evolution of the first member of Huangliu Formation reservoirs in Dongfang area,Yinggehai Basin. Geological Science and Technology Information, 35(1): 87-93] [14] 黄可可,黄思静,佟宏鹏,黄喻,刘丽红,钟倩倩. 2009. 成岩过程中碳酸盐—二氧化碳平衡体系的热力学模拟. 岩石学报, 25(10): 109-116. [Huang K K,Huang S J,Tong H P,Huang Y,Liu L H,Zhong Q Q.2009. Thermodynamic simulation of carbonate-carbon dioxide equilibrium system during diagenefic processes. Acta Petrologica Sinica, 25(10): 109-116] [15] 黄思静,黄可可,冯文立,佟宏鹏,刘丽红,张雪花. 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498-506. [Huang S J,Huang K K,Feng W L,Tong H P,Liu L H,Zhang X H.2009. Mass exchanges among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis: A case on the Upper Paleozoic,Ordos Basin and Xujiahe Formation,Western Sichuan Depression. Geochimica, 38(5): 498-506] [16] 黄志龙,朱建成,马剑,吴红烛,张伙兰. 2015. 莺歌海盆地东方区高温高压带黄流组储层特征及高孔低渗成因. 石油与天然气地质, 36(2): 287-296. [Huang Z L,Zhu J C,Ma J,Wu H Z,Zhang H L.2015. Characteristics and genesis of high-porosity and low-permeability reservoirs in the Huangliu Formation of high temperature and high pressure zone in Dongfang area,Yinggehai Basin. Oil & Gas Geology, 36(2): 287-296] [17] 姜涛,解习农. 2005. 莺歌海盆地高温超压环境下储层物性影响因素. 地球科学:中国地质大学学报, 30(2): 216-220. [Jiang T,Xie X N.2005. Effects of high temperature and overpressure on reservoir quality in the Yinggehai Basin,South China Sea. Earth Science: Journal of China University of Geosciences, 30(2): 216-220] [18] 金之钧,朱东亚,胡文瑄,张学丰,王毅,闫相宾. 2006. 塔里木盆地热液活动地质地球化学特征及其对储层影响. 地质学报, 80(2): 245-254. [Jin Z Y,Zhu D Y,Hu W X,Zhang X F,Wang Y,Yan X B.2006. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin. Acta Geologica Sinica, 80(2): 245-254] [19] 金之钧,蔡勋育,刘金连,张宇,程喆. 2018. 中国石油化工股份有限公司近期勘探进展与资源发展战略. 中国石油勘探, 23(1): 14-25. [Jin Z Y,Cai X Y,Liu J L,Zhang Y,Chen Z.2018. The recent exploration progress and resource development strategy of China petroleum and chemical corporation. China Petroleum Exploration, 23(1): 14-25] [20] 雷振宇,解习农,孟元林,黄卫,杜学斌,肖丽华,孟凡晋,焦金鹤,刘文慧. 2012. 松辽盆地齐家古龙—三肇凹陷超压对成岩作用的影响. 地球科学: 中国地质大学学报, 37(4): 833-842. [Lei Z Y,Xie X N,Meng Y L,Huang W,Du X B,Xiao L H,Meng F J,Jiao J H,Liu W H.2012. Effecting of overpressures on diagensis in the Qijiagulong-Sanzhao Depression of Songliao Basin. Earth Science: Journal of China University of Geosciences, 37(4): 833-842] [21] 李弛,罗静兰,胡海燕,陈淑慧,王代富,柳保军,马永坤,陈亮,李晓艳. 2019. 热动力条件对白云凹陷深水区珠海组砂岩成岩演化过程的影响. 地球科学, 44(2): 572-587. [Li C,Luo J L,Hu H Y,Chen H S,Wang D F,Liu B J,Ma Y K,Chen L,Li X Y.2019. Thermodynamic impact on deepwater sandstone diagenetic evlution of Zhuhai Formation in Baiyun Sag,Pearl River Mouth Basin. Earth Science, 44(2): 572-587] [22] 李华,何幼斌. 2017. 等深流沉积研究进展. 沉积学报, 35(2): 228-240. [Li H,He Y B.2017. Rsearch processes on contourites. Acta Sedimentologica Sinica, 35(2): 228-240] [23] 李杪,侯云东,罗静兰,陈娟萍,罗晓容,贾亚妮. 2016. 致密砂岩储层埋藏—成岩—油气充注演化过程与孔隙演化定量分析:以鄂尔多斯盆地东部上古生界盒8段天然气储层为例. 石油与天然气地质, 37(6): 882-892. [Li M,Hou Y D,Luo J L,Chen J P,Luo X R,Jia Y N.2016. Burial,diagenesis,hydrocarbon charging evolution process and quantitative analysis of porosity evolution: A case study from He 8 tight sand gas reservoir of the Upper Paleozoic in Eastern Ordos Basin. Oil & Gas Geology, 37(6): 882-892] [24] 李荣西,段立志,陈宝赟,夏冰,李靖波. 2012. 鄂尔多斯盆地三叠系延长组砂岩钠长石化与热液成岩作用研究. 岩石矿物学杂志, 31(2): 173-180. [Li R X,Duan L Z,Chen B Y,Xia B,Li J B.2012. Albitization and hydrothermal diagenesis of Yanchang oil sandstone reservoir,Ordos Basin. Acta Petrologica et Mineralogica, 31(2): 173-180] [25] 李文,何生,张柏桥,何治亮,陈曼霏,张殿伟,李天义,高键. 2018. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征. 石油学报, 39(4): 402-415. [Li W,He S,Zhang B Q,He Z L,Chen M F,Zhang D W,Li T Y,Gao J.2018. Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale composite veins of Longmaxi Formation at the western margin of Jiaosguba anticline. Acta Petrolei Sinica, 39(4): 402-415] [26] 李相博,刘化清,潘树新,王菁. 2019. 中国湖相沉积物重力流研究的过去、现在与未来. 沉积学报, 37(5): 904-921. [Li X B,Liu H Q,Pan S X,Wang Q.2019. The past,present and future of research on deep-water sedimentary gravity flow in lake basins of China. Acta Sedimentologica Sinica, 37(5): 904-921] [27] 李绪深,张迎朝,杨希冰,徐雪丰,张建新,满晓. 2017. 莺歌海—琼东南盆地天然气勘探新认识与新进展. 中国海上油气, 29(6): 1-11. [Li X S,Zhang Y C,Yang X B,Xu X F,Zhang J X,Man X.2017. New understandings and achievements of natural gas exploration in Yinggehai-Qiongdongnan Basin,South China Sea,China Offshore Oil and Gas, 29(6): 1-11] [28] 李忠. 2016. 盆地深层流体—岩石作用与油气形成研究前沿. 矿物岩石地球化学通报, 35(5): 807-816. [Li Z.2016. Research frontiers of fluid-rock interaction and oil-gas formation in deep-buried basins. Bulletin of Mineralogy,Petrology and Geochemistry, 35(5): 807-816] [29] 李忠,刘嘉庆. 2009. 沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向. 沉积学报, 27(5): 837-848. [Li Z,Liu J Q.2009. Key problems and research trend of diagenetic geodynamic mechanism and spatio-temporal distribution in sedimentary basins. Acta Sedimentologica Sinica, 27(5): 837-848] [30] 李忠,黄思静,刘嘉庆,蔡春芳,李曰俊,李开开,韩银学,赵岩. 2010. 塔里木盆地塔河奥陶系碳酸盐岩储层埋藏成岩和构造—热流体作用及其有效性. 沉积学报, 28(5): 969-979. [Li Z,Huang S J,Liu J Q,Cai C F,Li Y J,Li K K,Han Y X,Zhao Y.2010. Buried diagenesis,structurally controlled thermal-fluid process and their effect on Ordovician carbonate reservoirs in Tahe,Tarim Basin. Acta Sedimentologica Sinica, 28(5): 969-979] [31] 李忠,罗威,曾冰艳,刘嘉庆,于靖波. 2018. 盆地多尺度构造驱动的流体—岩石作用及成储效应. 地球科学, 43(10): 3498-3510. [Li Z,Luo W,Zeng B Y,Liu J Q,Yu J B.2018. Fluid-rock interactions and reservoir formation driven by multiscale structural deformation in basin evolution. Earth Science, 43(10): 3498-3510] [32] 林承焰,王文广,董春梅,张宪国,任丽华,史祥锋. 2017. 储层成岩数值模拟研究现状及进展. 中国矿业大学学报, 46(5): 1084-1101,1043. [Lin C Y,Wang W G,Dong C M,Zhang X G,Ren L H,Shi X F.2017. State quo of reservoir diagenetic numerical simulation and its advancement. Journal of China University of Mining & Tecnology, 46(5): 1084-1101,1043] [33] 刘国勇,金之钧,张刘平. 2006. 碎屑岩成岩压实作用模拟实验研究. 沉积学报, 24(3): 407-413. [Liu G Y,Jin Z Y,Zhang L P.2006. Smiulation study on clastic rock diagenetic compaction. Acta Sedimentologica Sinica, 24(3): 407-413] [34] 刘建清,赖兴运,于炳松,陈晓林,隋成. 2006. 成岩作用的研究现状及展望. 石油实验地质, 28(1): 65-72,77. [Liu J Q,Lai X Y Yu B S,Chen X L,Sui C.2006. The current situation and developing tendency of the study on diagenesis. Petroluem Geology & Experiment, 28(1): 65-72,77] [35] 刘浴辉,唐国强,凌潇潇,胡超涌,李献华. 2015. 二次离子质谱技术在季节分辨石笋δ18O分析中的应用. 中国科学: 地球科学, 45(9): 1316-1323. [Liu Y H,Tang G Q,Ling X X,Hu C Y,Li X H.2015. Speleothem annual layers revealed by seasonal SIMS δ18O measurements. Science China: Earth Sciences, 45(9): 1316-1323] [36] 罗静兰,魏新善,姚泾利,刘新社,刘小洪. 2010. 物源与沉积相对鄂尔多斯盆地上古生界天然气优质储层的控制. 地质通报, 29(6): 811-820. [Luo J L,Wei X S,Yao J L,Liu X S,Liu X H.2010. Provenance and depositional facies controlling on the Upper Paleozoic excellent natural gas-reservoir in Northern Ordos Basin,China. Geological Bulletin of China, 29(6): 811-820] [37] 罗静兰,刘新社,付晓燕,李杪,康锐,贾亚妮. 2014. 岩石学组成及其成岩演化过程对致密砂岩储集质量与产能的影响: 以鄂尔多斯盆地上古生界盒8天然气储层为例. 地球科学: 中国地质大学学报, 39(5): 537-545. [Luo J L,Liu X S,Fu X Y,Li M,Kang R,Jia Y N.2014. Impact of petrologic components and their diagenetic evolution on tight sandstone reservoir quality and gas yield: A case study form He 8 gas-bearing reservoir of Upper Paleozoic in Northen Ordos Basin. Earth Science: Journal of China University of Geosciences, 39(5): 537-545] [38] 罗静兰,罗晓容,白玉彬,罗春燕,白雪见,李向军,李弛. 2016. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响:以鄂尔多斯盆地西南部长7致密浊积砂岩储层为例. 地球科学与环境学报, 38(1): 79-92. [Luo J L,Luo X R,Bai Y B,Luo C Y,Bai X J,Li X J,Li C.2016. Impact of differential diagenetic evoiution the chronological tightening and pore evolution of tight sandstone reservoirs: A case study from the Chang 7 tight turbidite sandstone reservoir in the Southwestern Ordos Basin. Journal of Earth Sciences and Environment, 38(1): 79-92] [39] 罗静兰,何敏,李弛,柳保军,雷川,马永坤,庞江. 2019. 珠江口盆地南部热演化事件与高地温梯度的成岩响应及其对油气勘探的启示. 石油学报,40(S1): 90-104. [Luo J L,He M,Li C,Liu B J,Lei C,Ma Y K,Pang J.2019. Diagenetic response on thermal evolution events and high geothermal gradients in the southern Pear River Mouth Basin and its enlightenment to hydrocarbon exploration. Acta Petrolei Sinica,40(S1): 90-104] [40] 马本俊,秦志亮,吴时国,高微,高金尉,王吉亮,孙金,陈传绪. 2018. 深水斜坡类型与沉积过程及其产物研究进展. 沉积学报, 36(5): 1075-1090. [Ma B J,Qin Z L,Wu S G,Gao W,Gao J W,Wang J L,Sun J,Chen C X.2018. An overview of deep-water slope types and their corresponding sedimen-tary processes and productions. Acta Sedimentologica Sinica, 36(5): 1075-1090] [41] 马立元,邱桂强,刘春燕,胡才志,罗源. 2020. 鄂尔多斯盆地红河油田延长组储层致密化与石油成藏的关系. 沉积学报,38(3):620-634. [Ma L Y,Qiu G Q,Liu C Y,Hu Z C,Luo Y.2020. The relationship between reservoir densification and petroleum accumulation of the Yanchang Group in the Honghe Oilfield,Ordos Basin. Acta Sedimentologica Sinica,38(3):620-634] [42] 马永生,冯建辉,牟泽辉,赵培荣,包书景,王烽. 2011. 中国石化非常规油气资源潜力及勘探进展. 中国工程科学, 14(6): 22-30. [Ma Y S,Feng J H,Mu Z H,Zhao P R,Bao S J,Wang F.2011. The potential and exploring progress of unconventional hydrocarbon resources in SINOPEC. Strategic Study of CAE, 14(6): 22-30] [43] 马勇新,黄银涛,姚光庆,成涛,潘石坚. 2015. 莺歌海盆地DX区黄流组超压对成岩作用的影响. 地质科技情报, 34(3): 7-14. [Ma Y X,Huang Y T,Yao G Q,Chen T,Pan S J.2015. Effecting of overpressure on diagenesis of Huangliu Formation in DX area,Yinggehai Basin. Geological Science and Technology Information, 34(3): 7-14] [44] 孟凡晋,肖丽华,谢玉洪,王振峰,刘景环,童传新,张伙兰,高煜婷,孟元林,魏巍,赵晓庆. 2012. 莺歌海盆地黏土矿物异常转化及其地质意义. 沉积学报, 30(3): 469-476. [Meng F J,Xiao L H,Xie Y H,Wang Z F,Liu J H,Tong C X,Zhang H L,Gao Y T,Meng Y L,Wei W,Zhao X Q.2012. Abnormal transformation of the clay minerals in Yinggehai Basin and its significances. Acta Sedimentologica Sinica, 30(3): 469-476] [45] 孟元林,刘德来,贺如,王志国,张文才,殷秀兰,李军. 2005. 歧北凹陷沙二段超压背景下的成岩场分析与储层孔隙度预测. 沉积学报, 23(3): 389-396. [Meng Y L,Liu D L,He R,Wang Z G,Zhang W C,Yin X L,Li J.2005. Diagenetic field analysis and porosity prediction of the Shaer Member(ES2)in overpressure setting in the Qibei Depression. Acta Sedimentologica Sinica, 23(3): 389-396] [46] 孟元林,李斌,王志国,王粤川,牛嘉玉,殷秀兰. 2008. 黄骅坳陷中区超压对有机酸生成和溶解作用的抑制. 石油勘探与开发, 35(1): 40-43. [Meng Y L,Li B,Wang Z G,Wang Y C,Niu J Y,Yin X.L.2008. Overpressure retardation of organic acid generation and clastic reservoirs dissolution in central Huanghua Depression. Petroleum Exploration and Development, 35(1): 40-43] [47] 孟元林,吴琳,孙洪斌,吴晨亮,胡安文,张磊,赵紫桐,施立冬,许丞,李晨. 2015. 辽河西部凹陷南段异常低压背景下的成岩动力学研究与成岩相预测. 地学前缘, 22(1): 206-214. [Meng Y L,Wu L,Sun H B,Wu C L,Hu A W,Zhang L,Zhao Z T,Shi L D,Xu C,Li C.2015. Dynamics of diagenesis and prediction of diagenetic facies under abnormally low pressure in the Southern Liaohe West Sag. Earth Science Frontiers, 22(1): 206-214] [48] 潘志鸿,庞雄奇,郭坤章,徐田武,胡涛,唐令,邵新荷,倪仕琪,徐源. 2018. 东濮凹陷濮卫地区沙三段储层孔隙定量演化. 中国石油勘探, 23(1): 1-10. [Pan Z H,Pang X Q,Guo K Z,Xu T W,Hu T,Tang L,Shao X H,Ni S Q,Xu Y.2018. Quantitative simulation of porosity evolution in the third Member of Shahejie Formation in Puwei area in Dongpu depression. China Petroleum Exploration, 23(1): 1-10] [49] 庞雄,任建业,郑金云,刘军,于鹏,柳保军. 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征:以南海北部陆缘深水区白云凹陷为例. 石油勘探与开发, 45(1): 27-39. [Pang X,Ren J Y,Zheng J Y,Liu J,Yu P,Liu B J.2018. Petroleum geology controlled by extensive detachment thinning of continental margin crust: A case study of Baiyun sag in the deep-water area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 27-39] [50] 平宏伟,陈红汉,Régis Thiéry,张晖,李培军,吴楠. 2014. 原油裂解对油包裹体均一温度和捕获压力的影响及其地质意义. 地球科学: 中国地质大学学报, 39(5): 587-600. [Ping H W,Chen H H,Régis Thiéry,Zhang H,Li P J,Wu N.2014. Effects of oil cracking on homogenization temperature and trapping pressure of oil inclusion and its geological significance. Earth Science: Journal of China University of Geosciences, 39(5): 587-600] [51] 寿建峰,张惠良,沈杨,王鑫,朱国华,斯春松. 2006. 中国油气盆地砂岩储层的成岩压实机制分析. 岩石学报, 22(8): 2165-2170. [Shou J H,Zhang H L,Shen Y,Wang X,Zhu G H,Si C S.2006. Diagenetic mechanisms of sandstone reservoirs in China oil and gas-bearing basins. Acta Petrologica Sinica, 22(8): 2165-2170] [52] 寿建峰. 2005. 砂岩动力成岩作用. 北京: 石油工业出版社. [Shou J H. 2005. Dynamic Diagenesis of Sandstone. Beijing: Petroleum Industry Press] [53] 斯尚华,陈红汉,袁丙龙,雷明珠,陈杨. 2018. 利用油包裹体荧光光谱多参数划分油气充注幕次:以塔里木盆地麦盖提斜坡巴什托构造带石炭系为例. 海相油气地质, 23(2): 25-30. [Si S H,Chen H H,Yuan B L,Lei M Z,Chen Y.2018. Identification of hydrocarbon charging events by using fluorescence spectrum multiparameter of oil inclusions: A case study of carboniferous in Bashituo Structural Belt of Markit Slope of Tarim Basin. Marine Origin Petroleum Geology, 23(2): 25-30] [54] 孙龙德,邹才能,贾爱林,位云生,朱如凯,吴松涛,郭智. 2019. 中国致密油气发展特征与方向. 石油勘探与开发, 46(6): 1015-1026. [Sun L D,Zou C N,Jia A L,Wei Y S,Zhu R K,Wu S T,Guo Z.2019. Development characteristics and orientation of tight oil and gas in China. Petroleum Exploration and Development, 46(6): 1015-1026] [55] 孙龙德,邹才能,朱如凯,张云辉,张水昌,张宝民,朱光有,高志勇. 2018. 中国深层油气形成、分布与潜力分析. 石油勘探与开发, 40(6): 641-650. [Sun L D,Zou C N,Zhu R K,Zhang Y H,Zhang S C,Zhu G Y,Gao Z Y.2018. Formation,distribution and potential of deep hydrocarbon resources in China. Petroleum Exploration and Development, 40(6): 641-650] [56] 王代富,罗静兰,陈淑慧,胡海燕,马永坤,李弛,柳保军,陈亮. 2017. 珠江口盆地白云凹陷深层砂岩储层中碳酸盐胶结作用及成因探讨. 地质学报, 91(9): 2079-2090. [Wang D F,Luo J L,Chen S H,Hu H Y,Ma Y K,Li C,Liu B J,Chen L.2017. Carbonate cementation and origin analysis of deep sandstone reservoirs in the Baiyun Sag,Pearl River Mouth Basin. Acta Geologica Sinica, 91(9): 2079-2090] [57] 谢志远,李元平,孙珍,孙龙涛,邱宁,杨建民. 2015. 白云凹陷断裂活动与油气成藏耦合关系的盆地模拟研究. 热带海洋学报, 34(1): 30-41. [Xie Z Y,Li Y P,Sun Z,Sun L T,Qiu N,Yang J M.2015. A basin modeling study on the coupling of fault activity and hydrocarbon accumulation in the Baiyun Sag. Journal of Tropical Oceanography, 34(1): 30-41] [58] 解习农,李思田,董伟良,张敏强,杨计海. 1999. 热流体活动示踪标志及其地质意义:以莺歌海盆地为例. 地球科学: 中国地质大学学报, 24(2): 75-80. [Xie X N,Li S T,Dong W L,Zhang M Q,Yang J H.1999. Trace marker of hot fluid flow and their geological implications: A case study of Yinggehai Basin. Earth Science,Journal of China University of Geosciencesc, 24(2): 75-80] [59] 杨云坤,刘波,秦善,罗平,高计县,赫云兰,张学丰. 2013. 碳酸盐矿物随埋深增加的溶蚀响应机制及其储层意义. 北京大学学报(自然科学版),49(5): 859-866. [Yang Y K,Liu B,Qin S,Luo P,Gao J X,He Y L,Zhang X F.2013. Dissolution response mechanism of the carbonate mineral with the increase of depth and its reservoir significance. Acta Scientiarum Naturalium Universitatis Pekinensis,49(5): 859-866] [60] 袁静,俞国鼎,钟剑辉,董志芳,谢君,单康. 2018. 构造成岩作用研究现状及展望. 沉积学报, 36(6): 1177-1189. [Yuan J,Yu G D,Zhong J H,Dong Z F,Xie J,Shan K.2018. An overview of structural diagenesis. Acta Sedimentologica Sinica, 36(6): 1177-1189] [61] 张功成,屈红军,赵冲,张凤廉,赵钊. 2017. 全球深水油气勘探40年大发现及未来勘探前景. 天然气地球科学, 28(10): 1447-1477. [Zhang G C,Qu H J,Zhao C,Zhang F L,Zhao Z.2017. Giant discoveries of oil and gas exploration in global deep-waters in 40 years and the prospect of exploration. Natural Gas Geoscience, 28(10): 1447-1477] [62] 张伙兰,裴健翔,谢金有,于俊峰,艾能平. 2014. 莺歌海盆地东方区黄流组一段超压储层孔隙结构特征. 中国海上油气, 26(1): 30-38. [Zhang H L,Pei J X,Xie J Y,Yu J F,Ai N P.2014. Pore structure characteristics of Member 1 overpressured reservoir in Huangliu formation,Dongfang area,Yinggehai basin. China Offshore Oil and Gas, 26(1): 30-38] [63] 张丽,陈淑慧. 2017. 珠江口盆地东部地区不同地温梯度下储层特征响应关系. 中国海上油气, 29(1): 29-38. [Zhang L,Chen S H.2017. Reservoir property response relationship under different geothermal gradients in the eastern area of the Pearl River Mouth Basin. China Offshore Oil and Gas, 29(1): 29-38] [64] 张伟,何家雄,龚晓峰,张景茹. 2013. 莺歌海盆地中央泥底辟带气田水地球化学特征及其油气地质意义. 海洋地质与第四纪地质, 33(5): 119-130. [Zhang W,He J X,Gong X F,Zhang J R.2013. Geochemistry and petroleum geological significance of gas field water in the central mud diapiric belt of Yinggehai Basin. Marine Geology & Quaternary Geology, 33(5): 119-130] [65] 张现荣,孙治雷,魏合龙,张喜林,王利波. 2017. 自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义. 海洋地质与第四纪地质, 37(2): 25-32. [Zhang X R,Sun Z L,Wei H L,Zhang X L,Wang L B.2017. Micro-biomineralization of authigenic pyrite and its implication for seafloor cold seeps. Marine Geology & Quaternary Geology, 37(2): 25-32] [66] 赵文智,胡素云,刘伟,王铜山,李永新. 2014. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景. 天然气工业, 34(4): 1-9. [Zhao W Z,Hu S Y,Liu W,Wang T S,Li Y X.2014. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China: A further discussion. Natural Gas Industry, 34(4): 1-9] [67] 周家雄,刘巍. 2013. 乐东气田断层分布特征及其对产能的影响. 天然气工业, 33(11): 56-61. [Zhou J X,Liu W.2013. Fault distribution characteristics and their impacts on the yield of the Ledong Gas 15-1 Field,Yinggehai Basin. Natural Gas Industry, 33(11): 56-61] [68] 朱东亚,孟庆强,金之钧,胡文瑄. 2012. 富CO2深部流体对碳酸盐岩的溶蚀—充填作用的热力学分析. 地质科学, 47(1): 187-201. [Zhu D Y,Meng Q Q,Jin Z Y,Hu W X.2012. Thermodynamic analysis of dissolution and filling of carbonate rocks by deep fluid rich in CO2. Scientia Geologica Sinica, 47(1): 187-201] [69] 朱筱敏,谈明轩,董艳蕾,李维,秦祎,张自力. 2019. 当今沉积学研究热点讨论:第20届国际沉积学大会评述. 沉积学报, 37(1): 1-16. [Zhu X M,Tan M X,Dong Y L,Li W,Qin Y,Zhang Z L.2019. Current hot topics of sedimentology: Comment on the 20th international sedimentological congress. Acta Sedimentologica Sinica, 37(1): 1-16] [70] 邹才能,翟光明,张光亚,王红军,张国生,李建忠,王兆明,温志新,马锋,梁英波,杨智,李欣,梁坤. 2015. 全球常规—非常规油气形成分布、资源潜力及趋势预测. 石油勘探与开发, 42(1): 13-25. [Zou C N,Zhai G M,Zhang G Y,Wang H J,Zhang G S,Li J Z,Wang Z M,Wen Z X,Ma F,Liang Y B,Yang Z,Li X,Liang K.2015. Formation,distribution,potential and prediction of global conventional and unconventional hydrocarbon resources. Petroleum Exploration and Development, 42(1): 13-25] [71] 邹才能,杨智,何东博,位云生,李剑,贾爱林,陈建军,赵群,李易隆,李君,杨慎. 2018. 常规—非常规天然气理论、技术及前景. 石油勘探与开发, 45(4): 575-587. [Zou C N,Yang Z,He D B,Wei Y Dg,Li J,Jia A L,Chen J J,Zhao Q,Li Y L,Li J,Yang S.2018. Theory,technology and prospects of conventional and unconventional natural gas. Petroleum Exploration and Development, 45(4): 575-587] [72] 邹华耀,郝芳,张伯桥,史建南,陈斌. 2006. 准噶尔盆地中部超压封闭层的岩石学特征与封闭机理. 岩石学报, 22(8): 2213-2219. [Zou H Y,Hao F,Zhang B Q,Shi J N,Chen B.2006. Petrologic feature and sealing mechanism for the pressure seal in the center of Junggar Basin. Acta Petrologica Sinica, 22(8): 2213-2219] [73] 邹洁琼. 2018. 利用二次离子质谱(SIMS)分析珊瑚氧同位素组成及其在古气候研究中的意义. 广州: 中国科学院大学博士学位论文. [Zou J Q. 2018. Analysis of the oxygen isotopic compositions of coral by secondary ion mass spectrometry: Insights into the potential origins and their palaeoclimatic implications. Doctoral dissertation of University of Chinese Academy of Sciences] [74] Al-Aasm I,Lonnee J,Clarke J.2000. Multiple fluid flow events and the formation of saddle dolomite: Examples from Middle Devonian carbonates of the Western Canada Sedimentary Basin. Journal of Gechemical Exploration, 69(6): 11-15. [75] Ann-C R,Tobias K,Jasper B,Detlev K R,Cédric M J,Stéphane B,Adrian I.2015. Application of redox sensitive proxies and carbonate clumped isotopes to Mesozoic and Palaeozoic radiaxial fibrous calcite cements. Chemical Geology,417:306-321. [76] Brüch A,Maghous S,Ribeiro F L B,Dormieux L.2016. A constitutive model for mechanical and chemo-mechanical compaction in sedimentary basins and finite element analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 40(16): 2238-2270. [77] Byrnes A P,Wilson M D.1994. Measurement of independent variables-Pressure,time,temperature,time-temperature. Short Coure Notes, 30(1): 293-309. [78] Cammack J N,Spicuzza M J,Cavosie A J,Wagoner Kranendonk M J,Hickman A H,Kozdon R,Orland I J,Kitajima K,Valley J W.2018. SIMS microanalysis of the Strelley Pool Formation cherts and the implications for the secular-temporal oxygen-isotope trend of cherts. Precambrian Research, 304(1): 125-139. [79] Denny A C,Kozdon R,Kitajima K,Valley J W.2017. Isotopically zoned carbonate cements in Early Paleozoic sandstones of the Illinois Basin: δ18O and δ13C records of burial and fluid flow. Sedimentary Geology, 361(11): 93-110. [80] Dickinson G.1953. Geological aspects of abnormal reservoir pressures in the gulf coast region of Louisiana,United States of America. AAPG Bulletin, 37(2): 410-432. [81] Drost K.,Chew D,Petrus J A,Scholze F,Woodhead J D,Schneider J W,Harper D A T.2018. An image mapping approach to U-Pb LA-ICP-MS carbonate dating and applications to direct dating of carbonate sedimentation. Geochemistry,Geophysics,Geosystems,519:4631-4648. [82] Duan W,Li C F,Luo C F,Chen X G,Bao X H.2018. Effect of formation overpressure on the reservoir diagenesis and its petroleum geological significance for the DF11 block of the Yinggehai Basin,the South China Sea. Marine and Petroleum Geology, 97(11): 49-65. [83] Dutton S P.2008. Calcite cement in Permian deep-water sandstones,Delaware Basin,west Texas: Origin,distribution,and effect on reservoir properties. AAPG Bulletin, 92(6): 765-787. [84] Dutton S P,Loucks R G,Day-Stirrat R J.2012. Impact of regional variation in detrital mineral composition on reservoir quality in deep to ultradeep lower Micene sandstones,western Gulf of Mexico. Marine and Petroleum Geology, 35(8): 139-153. [85] Fisher Q J,Casey M,Clennell M B,Knipe R J.1999. Mechanical compaction of deeply buried sandstones of the North Sea. Marine & Petroleum Geology, 16(7): 605-618. [86] Fisher Q J,Harris S D,Casey M,Knipe R J.2007. Influence of grain size and geothermal gradient on the ductile-to-brittle transition in arenaceous sedimentary rocks: Implications for fault structure and fluid flow. Geological Society London Special Publications, 289(1): 105-121. [87] Giresse P,Wiewióra A.2001. Stratigraphic condensed deposition and diagenetic evolution of green clay minerals in deep water sediments on the Ivory Coast-Ghana Ridge. Marine Geology,179(1): 51-70. [88] Han D L,Li M,Li Z,Anita T.2015. Sealing features of fluid-rock system and its control on acidic dissolution in Cretaceous sandstone reservoirs,Kuqa Subbasin. Acta Geologica Sinica,89(4): 1296-1306. [89] Heap M J,Brantut N,Baud P,Meredith P G.2015. Time-dependent compaction band formation in sandstone. Journal of Geophysical Research: Solid Earth, 120(7): 4808-4830. [90] Henry W P,Venkatarathnam K,Liu H Q.2019. An overview of deep-water turbidite deposition. Acta Sedimentologica Sinica, 37(5): 879-901. [91] Higgins J A,Schrag D P.2012. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids. Earth and Planetary Science Letters, 357(12): 386-396. [92] Hosa R A,Wood P W M,Corbett R,Schiffer de Souza E Roemers.2020. Modelling the impact of depositional and diagenetic processes on reservoir properties of the crystal-shrub limestones in the‘Pre-Salt’Barra VelhaFormation,Santos Basin,Brazil. Marine and Petroleum Geology,112,104100. https://doi.org/10.1016/j.marpetgeo.2019.104100. [93] Joe H S,Macquaker K G,Taylor M K,David P.2014. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones. AAPG Bulletin, 98(3): 587-603. [94] Lei C,Luo J L,Pang X,Li C,Jiang P,Ma Y K.2018. Impact of temperature and geothermal gradient on sandstone reservoir quality: The Baiyun Sag in the Pearl River Mouth Basin study case (Northern South China Sea). Minerals, 8(10): 452. DOI: 10.3390/min8100452. [95] Li F,Gregory E W,Thomas J A,Stephen K,Lu C J,Amanda M. Oehlert,Gong Q L,Ali P,Tan X C.2019. Modern carbonate ooids preserve ambient aqueous REE signatures. Chemical Geology, 509: 163-177. [96] Li Q,Jiang Z X,Liu K Y,Zhang C M,You X L.2014a. Factors controlling reservoir properties and hydrocarbon accumulation of lacustrine deep-water turbidites in the Huimin Depression,Bohai Bay Basin,East China. Marine and Petroleum Geology, 57(6): 327-344. [97] Li Q,Parrish R R,Horstwood M S A,McArthur J M.2014b. U-Pb dating of cements in Mesozoic ammonites. Chemical Geology, 376: 76-83. [98] Liu Q Y,Worden R H,Jin Z J,Liu W H,Li J,Gao B,Zhang D W,Hu A P,Yang C.2014. Thermochemical sulphate reduction(TSR)versus maturation and their effects on hydrogen stable isotopes of very dry alkane gases. Geochimica et Cosmochimica Acta, 137: 208-220. [99] Makowitz A,Milliken K.2002. Quantitative measurement of brittle deformation in burial compaction,Frio Formation,Gulf of Mexico Basin. Gcags Transactions, 52: 695-702. [100] Mancini E A,Li P,Goddard D A,Ramirez V,Talukdar S C.2008. Mesozoic(Upper Jurassic Lower Cretaceous)deep gas reservoir play,central and eastern Gulf coastal plain. AAPG Bulletin, 92(3): 283-308. [101] Mansurbeg H,Morad S,Salem A,Marfil R,El-ghali M A K,Nystuen J P,Caja M A,Amorosi A,Garcia D,La Iglesia A.2008 Diagenesis and reservoir quality evolution of palaecene deep-water marine sandstones,the Shetland-Faroes Basin,British continental shelf. Marine and Petroleum Geology, 25(6): 514-543. [102] Maxwell.1964. Influence of depth,temperature,and geologic age on porosity of Guartzose sandstone. AAPG Bulletin, 48(5): 697-709. [103] McDonnell A,Loucks R G,Galloway W E.2008. Palecene to Ecene deep water slope canyons,western Gulf of Mexico: Further insights for the provenance of deep water offshore Wilcox Group plays. AAPG Bulletin, 92(9): 1169-1189. [104] Nader F H,Champenois F,Barbier M,Adelinet M,Rosenberg E,Houel P,Delmas J,Swennen R.2016. Diagenetic effects of compaction on reservoir properties: The case of early callovian “Dalle Nacrée” formation(Paris basin,France). Journal of Geodynamics, 101(11): 5-29. [105] Nicolas G,Pierre D,Abel G,Philippe L,Anthony T,Axel G,Bruno H,Jean-Pierre G.2018. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone,France. The Geological Society of America,46(3): 247-250. [106] Osborne M,Swarbick R.1995. A review of mechanisms for generating overpressure in sedimentary basins. Journal of Toxicological Sciences,20(5). 10.3997/2214-4609.201409591. [107] Polyakov V B,Osadchii E G,Voronin M V,Osadchii V O,Sipavina L V,Chareev D A,Tyurin A V,Gurevich V M,Gavrichev K S.2019. Iron and sulfur isotope factors of pyrite: Data from experimental mössbauer spectroscopy and heat capacity. Gechemistry International, 57(4): 369-383. [108] Su C,Zhong D K,Peng Q P,Wang A.2020. Mineral precipitation sequence and formation of the lacustrine hydrothermal sediments in the Lower Cretaceous Tenggeer Formation in the Baiyinchagan Sag,China. Sedimentary Geology, 398: 1-19. [109] Wilkinson M,Haszeldine R S.2011. Oil charge preserves exceptional porosity in deeply buried,overpressured sandstones: Central North Sea,UK. Journal of the Geological Society, 168: 1285-1295. [110] Yang L L,Xu T F,Liu K Y,Peng B,Yu Z C,Xu X M.2017. Fluid-rock interactions during continuous diagenesis of sandstone reservoirs and their effects on reservoir porosity. Sedimentology, 64: 1303-1321. [111] Yarmohammadi S,Kadkhodaie-Ilkhchi A,Rahimpour-Bonab H,Shirzadi A.2014. Seismic reservoir characterization of a deep water sandstone reservoir using hydraulic and electrical flowunits: A case study from the Shah Deniz gas field,the South Caspian Sea. Journal of Petroleum Science and Engineering, 118: 52-60. [112] You L,Qu X Y,Zhong J,Li C,Wu S J,Gao Y,Cui J G.2020. Physical simulation experiments on pore evolution in high-temperature and overpressure reservoirs. Natural Gas Industry B, 7: 30-39. [113] Yu C X,Drake H,Lopez-Fernandez M,Whitehouse M,Dopson M,Åströma M E.2019. Micro-scale isotopic variability of low-temperature pyrite in fractured crystalline bedrck: A large Fe isotope fractionation between Fe(Ⅱ)aq/pyrite and absence of Fe-S isotope co-variation. Chemical Geology, 522(9): 192-207. [114] Zhang M,Lu H F,Guan H X,Liu L H,Wu D D,Wu N Y.2018. Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area,South China Sea. Acta Oceanologica Sinica, 37(7): 20-27. [115] Zhang