A pulsed oxygenation in shallow seawater recorded by the Mesoproterozoic Wumishan Formation,North China Platform
Sun Long-Fei1, 2, Tang Dong-Jie1, 3, Zhou Li-Min4, Fang Hao2, Wu Meng-Ting3, Guo Hua5, Zhou Xi-Qiang6, 7, Zou Jia-Nan2, Shi Xiao-Ying1, 2
1 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Beijing),Beijing 100083,China; 2 School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083,China; 3 Institute of Earth Sciences,China University of Geosciences(Beijing),Beijing 100083,China; 4 National Research Center of Geoanalysis,Beijing 100037,China; 5 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Wuhan),Wuhan 430074,China; 6 Key Laboratory of Cenozoic Geology and Environment,Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing 100029,China; 7 University of Chinese Academy of Science,Beijing 100049,China;
Abstract:Oxygen is crucial for the origin and early evolution of eukaryotes. However,the oxygen levels in the atmosphere and shallow ocean of Mesoproterozoic have been poorly constrained,with varying viewpoints including persistent low(equals to <0.1%~1% of the present atmosphere level,PAL),relatively high(>4%~8% of PAL),and dynamic variation. In order to further constrain the redox conditions in shallow waters where eukaryotes inhabited,the Ce anomaly of the peritidal carbonates from lower Member 4 of the Mesoproterozoic Wumishan Formation in North China was investigated. The results show that the significant negative Ce anomalies(Ce/Ce*=0.82±0.11,n=10)occurs in the carbonate of the lower Member 4 of the Wumishan Formation with the thickness of about 150 m. The carbonate formation with the significant negative Ce anomaly is interlayered between the carbonates with inconspicuous positive Ce anomalies,which may represent a pulsed oxygenation in shallow seawater with a duration of ~5 Ma(~1480-1475 Ma). It reflects that the redox conditions of Mesoproterozoic shallow seawater fluctuated greatly rather than stable at low or relatively high level of oxygen. The results are helpful to determine the evolution of redox state of the Mesoproterozoic shallow sea,and it provides important information for studying the influence of redox state of seawater on the evolution of early eukaryotes.
Sun Long-Fei,Tang Dong-Jie,Zhou Li-Min et al. A pulsed oxygenation in shallow seawater recorded by the Mesoproterozoic Wumishan Formation,North China Platform[J]. JOPC, 2020, 22(6): 1181-1196.
[1] 旷红伟,彭楠,罗顺社,岑超,李家华,陈铭培. 2009. 燕山中东部凌源地区雾迷山组MT构造的发现、地质特征和研究意义. 自然科学进展, 19(12): 1308-1318. [Kuang H W,Peng N,Luo S S,Cen C,Li J H,Chen M P.2009. Discovery of MT structure and its geological features and studying significance in the eastern Yanshan in Lingyuan,Liaoning Province. Progress in Natural Science, 19(12): 1308-1318] [2] 李怀坤,朱士兴,相振群,苏文博,陆松年,周红英,耿建珍,李生,杨峰杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140. [Li H K,Zhu S X,Xiang Z Q,Su W B,Lu S N,Zhou H Y,Geng J Z,Li S,Yang F J.2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing,Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica, 26(7): 2131-2140] [3] 李怀坤,苏文博,周红英,相振群,田辉,杨立公,Warren D Huff,Frank R Ettensohn.2014. 中—新元古界标准剖面蓟县系首获高精度年龄制约: 蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究. 岩石学报, 30(10): 2999-3012. [Li H K,Su W B,Zhou H Y,Xiang Z Q,Tian H,Yang L G,Huff W D,Ettensohn F R.2014. The first precise age constraints on the Jixian System of the Meso- to Neoproterozoic standard section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling formations in the Jixian Section,North China Craton. Acta Petrologica Sinica, 30(10): 2999-3012] [4] 罗顺社,张建坤,陈小军,旷红伟. 2010. 辽西凌源地区雾迷山组沉积特征与层序地层. 中国地质, 37(2): 394-403. [Luo S S,Zhang J K,Chen X J,Kuang H W.2010. Sedimentary characteristics and sequence stratigraphy of Wumishan Formation in Lingyuan area,western Liaoning Province. Chinese Geology, 37(2): 394-403] [5] 乔秀夫. 2002. 中朝板块元古宙板内地震带与盆地格局. 地学前缘, 9(3): 141-149. [Qiao X F.2002. Intraplate seismic belt and basin framework of Sino-Korean plate in Proterozoic. Geoscience Frontiers, 9(3): 141-149] [6] 王鸿祯,楚旭春,刘本培,侯鸿飞,马丽芳. 1985. 中国古地理图集. 北京: 地图出版社. [Wang H Z,Chu X C,Liu B P,Hou H F,Ma L F. 1985. Atlas of the Palaeogeography of China. Beijing: Cartographic Publishing House] [7] Banner J L,Hanson G N.1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123-3137. [8] Banner J L,Hanson G N,Meyers W J.1988. Rare earth elements and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation(Mississippian): Implications for REE mobility during carbonate diagenesis. Journal of Sedimentary Petrology, 58: 415-432. [9] Bau M,Dulski P.1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations,Transvaal Supergroup,South Africa. Precambrian Research, 79(1-2): 37-55. [10] Bau M,Moller P,Dulski P.1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(12): 123-131. [11] Berelson W,Corsetti F,Johnson B,Vo T,Der C.2009. Carbonate-associated sulfate as a proxy for lake level fluctuations: A proof of concept for Walker Lake,Nevada. Journal of Paleolimnology, 42(1): 25-36. [12] Bjerrum C J,Canfield D E.2011. Towards a quantitative understanding of the late Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences, 108(14): 5542-5547. [13] Bottomley D J,Veizer J,Nielsen H,Moczydlowska M.1992. Isotopic composition of disseminated sulfur in Precambrian sedimentary rocks. Geochimica et Cosmochimica Acta, 56(8): 3311-3322. [14] Bottrell S H,Newton R J.2006. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Science Reviews, 75(1-4): 59-83. [15] Byrne R,Kim K.1990. Rare earth element scavenging in seawater. Geochimica et Cosmochimica Acta, 54(10): 2645-2656. [16] Byrne R,Sholkovitz E.1996. Marine chemistry and geochemistry of the lanthanides. Handbook on the Physics and Chemistry of Rare Earths, 23: 497-593. [17] Canfield D E,Teske A.1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382(6587): 127-132. [18] Canfield D E.2001. Biogeochemistry of sulfur isotopes. Stable Isotope Geochemistry, 43: 607-636. [19] Canfield D E,Zhang S,Frank A B,Wang X,Wang H,Su J,Ye Y,Frei R.2018. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 9: 2871. DOI: 10.1038/s41467-018-05263-9. [20] Cao C,Liu X M,Batailleb C P,Liu C.2020. What do Ce anomalies in marine carbonates really mean?A perspective from leaching experiments. Chemical Geology, 532: 119-133. [21] Cole D B,Reinhard C T,Wang X,Gueguen B,Halverson G P,Gibson T,Hodgskiss M S W,McKenzie N R,Lyons T W,Planavsky N J.2016. A shalehosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 44(7): 555-558. [22] Cox G M,Lyons T W,Mitchell R N,Hasterok D,Gard M.2018. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth and Planetary Science Letters, 489: 28-36. [23] de Baar H J W,German C R,Elderfield H,Wagonergaans P.1988. Rare-earth element distributions in anoxic waters of the Cariaco Trench. Geochimica et Cosmochimica Acta, 52(5): 1203-1219. [24] de Baar H J W,Schijf J,Byrne R H.1991. Solution chemistry of the rare earth elements in seawater. European Journal of Solid State and Inorganic Chemistry, 28: 357-373. [25] Gilleaudeau G J,Frei R,Kaufman A J,Kah L C,Azmy K,Bartley J K,Chernyavskiy P,Knoll A H.2016. Oxygenation of the mid-Proterozoic atmosphere: Clues from chromium isotopes in carbonates. Geochemical Perspectives Letters, 2: 178-187. [26] Guo H,Du Y S,Kah L C,Huang J H,Hu C Y,Huang H,Yu W C.2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group,North China: Implications for biological and oceanic evolution. Precambrian Research, 224: 169-183. [27] Guo H,Du Y,Kah L C,Hu C,Huang J H,Huang H,Yu W C,Song H Y.2015. Sulfur isotope composition of carbonate-associated sulfate from the Mesoproterozoic Jixian group,North China: Implications for the marine sulfur cycle. Precambrian Research, 266: 319-336. [28] Hardisty D S,Lu Z,Bekker A,Diamond C W,Gill B C,Jiang G,Kah L C,Knoll A H,Loyd S J,Osburn M R,Planavsky N J,Wang C,Zhou X,Lyons T W.2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters, 463: 159-170. [29] Holland H D.2002. Volcanic gases,black smokers,and the great oxidation event. Geochimica et Cosmochimica Acta, 66(21): 3811-3826. [30] Hollander D J,Huc A Y,McKenzie J A,Hsu K J.1993. Application of an eutrophic lake model to the origin of ancient organic-carbon-rich sediments. Global Biogeochemical Cycles, 7(1): 159-179. [31] Horacek M,Brandner R,Richoz S,Povoden-Karadeniz E.2010. Lower Triassic sulphur isotope curve of marine sulphates from the dolomites,N-Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 290: 65-70. [32] Hurtgen M T,Arthur M A,Suits N S,Kaufman A J.2002. The sulfur isotopic composition of Neoproterozoic seawater sulfate: Implications for a snowball Earth?Earth and Planetary Science Letters, 203(1): 413-429. [33] Knoll A H,Javaux E J,Hewitt D,Cohen P.2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society of London. Series B,Biological Sciences, 361(1470): 1023-1038. [34] Koehler M C,Stüeken E E,Kipp M A,Buick R,Knoll A H.2017. Spatial and temporal trends in Precambrian nitrogen cycling: A Mesoproterozoic offshore nitrateminimum. Geochimica et Cosmochimica Acta, 198: 315-337. [35] Kroeger K F,Funnell R H.2012. Warm Eocene climate enhanced petroleum generation from Cretaceous source rocks: A potential climate feedback mechanism?Geophysical Research Letters, 39(4): 3804-3809. [36] Kuang H W,Liu Y Q,Peng N,Lu S S,Li J H,Cen C,Chen M P.2012. Molar-tooth structure from the Mesoproterozoic Wumishan Formation in Lingyuan,Yanshan Region,North China,and geological implications. Acta Geologica Sinica, 86(1): 85-95. [37] Laakso T A,Schrag D P.2017. A theory of atmospheric oxygen. Geobiology, 15(3): 366-384. [38] Lawrence M G,Greig A,Collerson K D,Kamber B S.2006. Rare earth element and yttrium variability in South East Queensland waterways. Aquatic Geochemistry, 12(1): 39-72. [39] Li H K,Lu S N,Su W B,Xiang Z Q,Zhou H Y,Zhang Y Q.2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227. [40] Ling H F,Chen X,Li D,Wang D,Shields-Zhou G A,Zhu M Y.2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area,South China: Implications for oxygenation of coeval shallow sea-water. Precambrian Research, 225: 110-127. [41] Liu D Y,Nutman A P,Compston W,Wu J S,Shen Q H.1992. Remmants of 3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342. [42] Liu X,Byrne R H.1998. Comprehensive investigation of yttrium and rare earth element complexation by carbonate ions using ICP-mass spectrometry. Journal of Solution Chemistry, 27(9): 803-815. [43] Luo G M,Ono S,Huang J H,Algeoa T J,Li C,Zhou L,Robinson A,Lyons T W,Xie S C.2015. Decline in oceanic sulfate levels during the Early Mesoproterozoic. Precambrian Research, 258: 36-47. [44] Lyons T W,Reinhard C T,Planavsky N J.2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506(7488): 307-315. [45] McFadden K A,Huang J,Chu X L,Jiang G Q,Kaufman A J,Zhou C M,Yuan X L,Xiao S H.2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 105(9): 3197-3202. [46] McLennan S M.1989. Rare-earth elements in sedimentary-rocks-influence of provenance and sedimentary processes. Review in Mineralogy, 21: 169-200. [47] Mills D B,Ward L M,Jones C,Sweeten B,Forth M,Treusch A H,Canfield D E.2014. Oxygen requirements of the earliest animals. Proceedings of the National Academy of Sciences of the United States of America, 111(11): 4168-4172. [48] Moffett J W.1994. The relationship between cerium and manganese oxidation in the marine environment. American Society of Limnology and Oceanography, 39: 1309-1318. [49] Nagarajan R,Madhavaraju J,Armstrong-Altrin J S,Nagendra R.2011. Geochemistry of Neoproterozoic limestones of the Shahabad Formation,Bhima Basin,Karnataka,southern India. Geosciences Journal, 15(1): 9-25. [50] Nothdurft L D,Webb G E,Kamber B S.2004. Rare earth element geochemistry of Late Devonian reefal carbonates,canning basin,western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68(2): 263-283. [51] Partin C A,Bekker A,Planavsky N J,Scott C T,Gill B C,Li C,Podkovyrov V,Maslov A,Konhauser K O,Lalonde S V,Love G D,Poulton S W,Lyons T W.2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth and Planetary Science Letters, 369-370: 284-293. [52] Planavsky N J,Bekker A,Rouxel O J,Kamber B,Hofmann A,Knudsen A,Lyons T W.2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta, 74: 6387-6405. [53] Planavsky N J,Reinhard C T,Wang X,Thomson D,McGoldrick P,Rainhard R H,Johnson T,Fischer W W,Lyons T W.2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635-638. [54] Reinhard C T,Planavsky N J,Olson S L,Lyons T W,Erwin D H.2016. Earth's oxygen cycle and the evolution of animal life. Proceedings of the National Academy of Sciences of the United States of America, 113(32): 8933-8938. [55] Rogers J J W,Santosh M.2002. Configuration of Columbia,a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22. [56] Rothman D H,Hayes J M,Summons R E.2003. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 100(14): 8124-8129. [57] Runnegar B.1991. Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Global and Planetary Change, 5(1-2): 97-111. [58] Schröder S,Bekker A,Beukes N J,Strauss H,Wagoner Niekerk H S.2008. Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: Evidence from sulphate evaporites in the~2.2-2.1 Gyr shallow-marine Lucknow Formation,South Africa. Terra Nova, 20(2): 108-117. [59] Shang M H,Tang D J,Shi X Y,Zhou L M,Zhou X Q,Song H Y,Jiang G Q.2019. A pulse of oxygen increase in the Early Mesoproterozoic ocean at ca.1.57-1.56 Ga. Earth and Planetary Science Letters,527. DOI: 10.1016/j.epsl.2019.115797. [60] Shields G,Stille P.2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1-2): 29-48. [61] Shields-Zhou G A,Och L M.2011. The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences. GSA Today, 12(3): 4-11. [62] Sholkovitz E R,Elderfield H.1988. Cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochemical Cycles, 2(2): 157-176. [63] Sim M S,Bosak T,Ono S.2011. Large sulfur isotope fractionation does not require disproportionation. Science, 333(6038): 74-77. [64] Song B,Allen P N,Liu D Y,Wu J S.1996.3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province,northeastern China. Precambrian Research, 78(1-3): 79-94. [65] Sperling E A,Halverson G P,Knoll A H,Macdonald F A,Johnston D T.2013. A basin redox transect at the dawn of animal life. Earth and Planetary Science Letters, 371-372: 143-155. [66] Sperling E A,Rooney A D,Hays L,Sergeev V N,Vorob'eva N G,Sergeeva N D,Selby D,Johnston D T,Knoll A H.2014. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology, 12(5): 373-386. [67] Sperling E A,Wolock C J,Morgan A S,Gill B C,Kunzmann M,Halverson G P,Macdonald F A,Knoll A H,Johnston D T.2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523: 451-454. [68] Strauss H.1993. The sulfur isotopic record of Precambrian sulfates-new data and a critical-evaluation of the existing record. Precambrian Research, 63(3-4): 225-246. [69] Stüeken E E.2013. A test of the nitrogen-limitation hypothesis for retarded eukaryote radiation: Nitrogen isotopes across a Mesoproterozoic basinal profile. Geochimica et Cosmochimica Acta, 120: 121-139. [70] Su W B,Li H K,Huff W D,Ettensohn F R,Zhang S H,Zhou H Y,Wan Y S.2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation,North China. Chinese Science Bulletin, 55(29): 3312-3323. [71] Tang D J,Shi X Y,Wang X Q,Jiang G Q.2016. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Research, 276: 145-157. [72] Tang D J,Shi X Y,Jiang G Q,Shi Q.2017. Ferruginous seawater controls the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332. [73] Tostevin R,Shields G A,Tarbuck G M,He T,Wood R A.2016. Effective use of cerium anomalies as a redox proxy in carbonate dominated marine settings. Chemical Geology, 438: 146-162. [74] Tyrrell T.1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400(6744): 525-531. [75] Wallace M W,Hood A,Shuster A,Greig A,Planavsky N J,Reed C P.2017. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters, 466: 12-19. [76] Webb G E,Kamber B S.2000. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. [77] Webb G E,Nothdurft L D,Kamber B S,Kloprogge J T,Zhao J X.2009. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Sedimentology, 56(5): 1433-1463. [78] Zhang K,Zhu X K,Yan B.2015. A refined dissolution method for rare earth element studies of bulk carbonate rocks. Chemical Geology, 412: 82-91. [79] Zhang K,Zhu X K,Wood R A,Shi Y,Gao Z F,Poulton S W.2018. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nature Geoscience, 5: 1731-1736. [80] Zhang S C,Wang X M,Wang H J,Bjerrum C J,Hammarlund E U,Costa M M,Connelly J N,Zhang B,Su J,Canfield D E.2016. Sufficient oxygen for animal respiration 1400 million years ago. Proceedings of the National Academy of Sciences of the United States of America, 113(7): 1731-1736. [81] Zhang S C,Wang X M,Wang H J,Hammarlund E U,Su J,Wang Y,Canfield D E.2017. The oxic degradation of sedimentary organic matter 140<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml17-1671-1505-22-6-1181"><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow/></mml:msup></mml:math></inline-formula>Ma constrains atmospheric oxygen levels. Biogeosciences, 14: 2133-2149. [82] Zhao G,Sun M,Wilde S A,Li S Z.2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202. [83] Zhu S,Zhu M,Knoll A H,Yin Z,Zhao F,Sun S,Qu Y,Shi M,Liu H.2016. Decimeter-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nature Communications, 7: 11500.