Genesis of evaporites in petroliferous basins and the sedimentary and climatic significances
Guo Pei1,2, Li Chang-Zhi2
1 Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China; 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China
Abstract:China is rich in saline lakes. Many previous studies were focused on analyzing the water chemistry of saline lakes,salt origins,the development of salt mine resources,but rarely paid attention on sedimentary characteristics and diagenetic processes of evaporites,making it difficult to understand the accumulation processes of hydrocarbon in ancient saline lacustrine basins. In this paper,the classification of saline lakes and the main genetic types of saline minerals in the evaporites are reviewed based on the extensive literature review on a large number of saline lakes. The sedimentary and diagenetic processes of common minerals including sulphates,chlorides,sodium carbonates and borates in lacustrine petroliferous basins and their significance for paleo-climate and paleo-environment were concluded. Meanwhile,the controversial and noteworthy issues in the studies of evaporites in petroliferous basins were discussed based on the latest research findings in saline lakes sedimentology: (1)The hydrothermal fluids can transport large amounts of elements into lakes,but the semi-arid and arid climate and the evaporation and concentration are the pre-conditions for accumulating the massive evaporates in the lakes. (2)The soluble evaporates(e.g.,halite)more easily concentrate in the sedimentary center characterized as a thick single layer,while they are missing in the slope and margins of the lakes,which is controlled by “halite aggregation effect at the center”caused by seasonal temperature and thermocline fluctuation. (3)Temperature affects the solubility,crystal structural morphology and formation depth of salt minerals in evaporites. Some anhydrous salt minerals cannot crystalize under normal temperature and pressure conditions,which are good indicators of paleo-temperature and burial history. (4)The sodium-bearing carbonates are closely related to pCO2 and paleo-temperature of saline lakes of carbonate subtype.
[1] 陈克造. 1992. 中国盐湖的基本特征. 第四纪研究, 12(3): 193-202. [Chen K Z. 1992. The general characteristics of salt lakes in China. Quaternary Sciences, 12(3): 193-202] [2] 冯阵东,吴伟,程秀申,张继标,白圣方. 2014. 食盐析出实验对盐湖盆地沉积研究的启示. 沉积学报, 32(2): 238-243. [Feng Z D,Wu W,Cheng X S,Zhang J B,Bai S F. 2014. Enlightenment from salt precipitation experiment to the researching on saline lacustrine basin sedimentology. Acta Sedimentologica Sinica, 32(2): 238-243] [3] 顾家裕. 1986. 东濮凹陷盐岩形成环境. 石油实验地质, 8(1): 22-28. [Gu J Y. 1986. The depositional environment of salt rocks in Dongpu Depression. Experimental Petroleum Geology, 8(1): 22-28] [4] 何法明,刘世昌,白崇庆,喻显珍,严肃蓉,蒋铭廉,周清文. 1988. 盐类矿物鉴定工作方法手册. 北京: 化学工业出版社,13. [He F M,Liu S C,Bai C Q,Yu X Z,Yan S R,Jiang M L,Zhou Q W. 1988. Manual for the identification of salt minerals. Beijing: Chemical Industrial Press,13] [5] 纪友亮,冯建辉,王声朗,谈玉明,张宏安,王德仁. 2005. 东濮凹陷下第三系沙三段盐岩和膏盐岩的成因. 沉积学报, 23(2): 225-231. [Ji Y L,Feng J H,Wang S L,Tan Y M,Zhang H A,Wang D R. 2005. Origin of salt and gypsum rock in the Third Member of Shahejie Formation of Lower Tertiary in Dongpu Depression. Acta Sedimentologica Sinica, 23(2): 225-231] [6] 金强,黄醒汉. 1985. 东濮凹陷早第三纪盐湖成因的探讨: 一种深水成因模式. 华东石油学院学报: 自然科学版,(1): 1-13. [Jin Q,Huang X H. 1985. Studies on the origin of the Early Tertiary salt lake Dongpu Depression: a postulsted deep water model. Journal of East China Petroleum Institute(Natural Science Edition),(1): 1-13] [7] 金强,朱光有. 2006. 中国中新生代咸化湖盆烃源岩沉积的问题及相关进展. 高校地质学报, 12(4): 483-492. [Jin Q,Zhu G Y. 2006. Progress in research of deposition of oil source rocks in saline lakes and their hydrocarbon generation. Geological Journal of China Universities, 12(4): 483-492] [8] 李被,刘池洋,黄雷,蒋飞虎,郭佩,鹿坤. 2018. 东濮凹陷北部沙河街组三段中亚段沉积环境分析. 现代地质, 32(2): 227-239. [Li B,Liu C Y,Huang L,Jiang F H,Guo P,Lu K. 2018. Analysis of the sedimentary environment in the north of Dongpu Depression during the deposition of the middle section of the Third Member of the Shahejie Formation. Geoscience, 32(2): 227-239] [9] 苗忠英,张震,郑绵平,牛新生,张雪飞. 2017. 东特提斯构造演化与兰坪—思茅盆地蒸发岩的形成. 地球学报, 38(6): 883-896. [Miao Z Y,Zhang Z,Zheng M P,Niu X S,Zhang X F. 2017. Tectonic evolution of eastern Tethys and formation of evaporite in Lanping-Simao Basin,southwest China. Acta Geoscientica Sinica, 38(6): 883-896] [10] 彭君,冯阵东,国殿斌,程秀申,慕文俊. 2016. 再论东濮凹陷沙三段成盐模式. 中国石油大学学报: 自然科学版, 40(3): 9-15. [Peng J,Feng Z D,Guo D B,Cheng X S,Mu W J. 2016. Revisiting salt-forming models in the Third Member of Shahejie Formation in Dongpu Depression. Journal of China University of Petroleum(Natural Science Edition), 40(3): 9-15] [11] 孙镇城,杨藩,张枝焕,等. 1997. 中国新生代咸化湖泊沉积环境与油气生成. 北京: 石油工业出版社,2. [Su Z C,Yang P,Zhang Z H,et al.1997. Depositional Environment and Hydrocarbon Generation of Cenozoic Saline Lakes in China. Beijing: Petroleum Industry Press,2] [12] 田孝茹,张元元,卓勤功,于志超,郭召杰. 2019. 准噶尔盆地玛湖凹陷下二叠统风城组致密油充注特征: 碱性矿物中的流体包裹体证据. 石油学报, 40(6): 646-659. [Tian X R,Zhang Y Y,Zhuo Q G,Yu Z C,Guo Z J. 2019. Tight oil charging characteristics of the Lower Permian Fengcheng Formation in Mahu sag,Junggar Basin: evidence from fluid inclusions in alkaline minerals. Acta Petrolei Sinica, 40(6): 646-659] [13] 徐崇凯,刘池洋,郭佩,黎茂稳,黄雷,赵岩,潘银华,张益银. 2018. 潜江凹陷古近系潜江组盐间泥岩地球化学特征及地质意义. 沉积学报, 36(3): 617-629. [Xu C K,Liu C Y,Guo P,Li M W,Huang L,Zhao Y,Pan Y H,Zhang Y Y. 2018. Geochemical characteristics and their geological significance of intrasalt mudstones from the Paleogene Qianjiang Formation in the Qianjiang Graben,Jianghan Basin,China. Acta Sedimentologica Sinica, 36(3): 617-629] [14] 余宽宏,操应长,邱隆伟,孙沛沛,杨勇强,曲长胜,万敏. 2016. 准噶尔盆地玛湖凹陷下二叠统风城组含碱层段韵律特征及成因. 古地理学报, 18(6): 1012-1029. [Yu K H,Cao Y C,Qiu L W,Sun P P,Yang Y Q,Qu C S,Wan M. 2016. Characteristics of alkaline layer cycles and origin of the Lower Permian Fengcheng Formation in Mahu sag,Junggar Basin. Journal of Palaeogeography(Chinese Edition), 18(6): 1012-1029] [15] 袁见齐,霍承禹,蔡克勤. 1983. 高山深盆的成盐环境: 一种新的成盐模式的剖析. 地质论评, 29(2): 159-165. [Yuan J Q,Huo C Y,Cai K Q. 1983. The high mountain-deep basin saline environment: a new genetic model of saline deposits. Geological Review, 29(2): 159-165] [16] 赵研,郭佩,鲁子野,郑荣才,常海亮,王国芝,魏研,文华国. 2020. 准噶尔盆地下二叠统风城组硅硼钠石发育特征及其富集成因探讨. 沉积学报, 38(5): 966-979. [Zhao Y,Guo P,Lu Z Y,Zheng R C,Chang H L,Wang G Z,Wei Y,Wen H G. 2020. Genesis of reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin,NE China. Acta Sedimentologica Sinica, 38(5): 966-979] [17] 郑绵平. 2010. 中国盐湖资源与生态环境. 地质学报, 84(11): 1613-1622. [Zheng M P. 2010. Salt lake resources and ecoenvironment in China. Acta Geologica Sinica, 84(11): 1613-1622] [18] 郑绵平,赵元芝,刘俊英. 1998. 第四纪盐湖沉积与古气候. 第四纪研究, 18(4): 297-307. [Zheng M P,Zhao Y Z,Liu J Y. 1998. Quaternary saline lake deposition and paleoclimate. Quaternary Sciences, 18(4): 297-307] [19] 郑绵平,刘喜方. 2010. 青藏高原盐湖水化学及其矿物组合特征. 地质学报, 84(11): 1585-1587. [Zheng M P,Liu X F. 2010. Hydrochemistry and minerals assemblages of salt lakes in the Qinghai Tibet Plateau,China. Acta Geologica Sinica, 84(11): 1585-1600] [20] 郑绵平,张永生,刘喜方,齐文,孔凡晶,乜贞,贾沁贤,卜令忠,侯献华,王海雷,张震,孔维刚,林勇杰. 2016a. 中国盐湖科学技术研究的若干进展与展望. 地质学报, 90(9): 2123-2166. [Zheng M P,Zhang Y S,Liu X F,Qi W,Kong F J,Nie Z,Jia Q X,Pu L Z,Hou X H,Wang H L,Zhang Z,Kong W G,Lin Y J. 2016a. Progress and prospects of salt lake research in China. Acta Geologica Sinica, 90(9): 2123-2166] [21] 郑绵平,陈文西,齐文. 2016b. 青藏高原火山—沉积硼矿找矿的新发现与远景分析. 地球学报, 37(4): 407-418. [Zheng M P,Chen X W,Qi W. 2016b. New findings and perspective analysis of prospecting for volcanic sedimentary boron deposits in the Tibetan Plateau. Acta Geoscientia Sinica, 37(4): 407-418] [22] 郑喜玉,张明刚,徐昶,等. 2002. 中国盐湖志. 北京: 科学出版社,3. [Zheng X Y,Zhang M G,Xu C, et al. 2002. Saline Lakes of China. Beijing: Science Press,3] [23] Benison K C,Goldstein R H,Wopenka B,Bueeuss R C,Pasteris J D. 1998. Extremely acid Permian lakes and ground waters in North America. Nature, 392(6679): 911-914. [24] Chen X Y. 1997. Pedogenic gypcrete formation Australia. Geoderma, 77: 39-61. [25] Cody R D,Cody A M. 1988. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. Journal of Sedimentary Petrology, 58: 247-255. [26] Demicco R V,Lownstein T K. 2019. When “evaporites”are not formed by evaporation: the role of temperature and pCO2 on saline deposits of the Eocene Green River Formation,Colorado,USA. GSA Bulletin, 2132(7-8): 1365-1380. [27] Dyni J R. 1996. Sodium Carbonate Resources of the Green River Formation. Colorado: U.S. Department of the Interior, 1-39. [28] Earman S,Phillips F M,McPherson B J O L. 2005. The role of “excess”CO2 in the formation of trona deposits. Applied Geochemistry, 20(12): 2217-2232. [29] El Tabakh M,Schreiber B C,Warren J K. 1998. Origin of fibrous gypsum in the Newark rift basin,eastern North America. Journal of Sedimentary Research, 6: 88-99. [30] García-Veigas J,Helvaci C. 2013. Mineralogy and sedimentology of the Miocene Göcenoluk borate deposit,Kirka district,western Anatolia,Turkey. Sedimentary Geology, 290: 85-96. [31] García-Veigas J,Gündoğan I,Helvaci C,Prats E. 2013. A genetic model for Na-carbonate mineral precipitation in the Miocene Beypazari trona deposit,Ankara Province,Turkey. Sedimentary Geology, 294: 315-327. [32] Guo P,Liu C Y,Huang L,Wang P,Wang K,Yuan H L,Xu C K,Zhang Y. 2017. Genesis of the late Eocene bedded halite in the Qaidam Basin and its implication for paleoclimate in East Asia. Palaeogeography,Palaeoclimatology,Palaeoecology, 487: 364-380. [33] Guo P,Liu C Y,Huang L,Yu M L,Wang P,Zhang G. 2018. Palaeohydrological evolution of the late Cenozoic saline lake in the Qaidam Basin,NE Tibetan Plateau: tectonic vs. climatic control. Global and Planetary Change, 165: 44-61. [34] Guo P,Liu C Y,Wang P,Wang K,Yuan H L,Li B. 2019. Geochemical behavior of rare elements in Paleogene saline lake sediments of the Qaidam Basin,NE Tibetan Plateau. Carbonates and Evaporites, 34: 359-372. [35] Guo P,Wen H G,Gibert L,Jin J,Wang J,Lei H Y. 2021a. Deposition and diagenesis of the Early Permian volcanic-related alkaline playa-lake dolomitic shales,NW Junggar Basin,NW China. Marine and Petroleum Geology, 123: 104780. [36] Guo P,Wen H G,Li C Z,Jin J,Lei H Y. 2021b. Origin and enrichment of borates in a Late Paleozoic alkaline lake-playa deposit,Junggar Basin,NW China. Ore Geology Reviews, 138: 104389. [37] Hammond A P,Carroll A R,Smith M E,Lowenstein T K. 2019. Bicarbonate rivers: connecting Eocene magmatism to the world’s largest Na-carbonate evaporite. Geology, 47(11): 1020-1024. [38] Hardie L A. 1990. The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis. American Journal of Science, 290: 43-106. [39] Hardie L A,Eugster H P. 1970. The evolution of closed-basin brines. In: Morgan B A(ed). Fiftieth Anniversary Symposia: Mineralogy and Petrology of the Upper Mantle,Sulfides,Mineralogy and Geochemistry of Non-Marine Evaporites. Mineralogical Society of America Special Paper, 3: 273-290. [40] Helvaci C,Ortí F,García-Veigas J,Rosell L,Gündoğan Ⅰ. 2012. Neogene borate deposits: Mineralogy,Petrology and Sedimentology;Anatolian deposits. In: International Earth Science Colloquium on the Aegean Region,1-64. [41] Hou Y,Wang F,He S,Dong T,Wu S. 2017. Properties and shale oil potential of saline lacustrine shales in the Qianjiang Lake,Jianghan Basin,China. Marine and Petroleum Geology, 86: 1173-1190. [42] Hovland M,Kuznetsova T,Rueslatten H,Kvamme B,Johnsen H K,Fladmark G E,Hebach A. 2006a. Sub-surface precipitation of salts in supercritical seawater. Basin Research, 18: 221-230. [43] Hovland M,Rueslatten H,Johnsen H K,Kvamme B,Kuznetsova T. 2006b. Salt formation associated with sub-surface boiling and supercritical water. Marine and Petroleum Geology, 23: 855-869. [44] Hovland M,Rueslåtten H,Johnsen H K. 2018. Large salt accumulations as a consequence of hydrothermal processes associated with “Wilson cycles”—a review,Part 2: application of a new salt-forming model on selected cases. Marine and Petroleum Geology, 92: 128-148. [45] Jagniecki E A,Jenkins D M,Lownstein T K,Carroll A R. 2013. Experimental study of shortite(Na2Ca2(CO3)3)formation and application to the burial history of the Wilkins Peak Member,Green River Basin,Wyoming,USA. Geochimica et Cosmochimica Acta, 115: 31-45. [46] Jagniecki E A,Lownstein T K,Lownstein D M,Demicco R V. 2015. Eocene atmospheric CO2 from the nahcolite proxy. Geology, 43(12): 1075-1078. [47] Kasemann S A,Meixner A,Erzinger J,Viramonote J G,Alonso R N,Franz G. 2004. Boron isotope composition of geothermal fluids and borate minerals from salar deposits(central Andes/NW Argentina). Journal of South American Earth Sciences, 16(8): 685-697. [48] Kilham P,Melack J M. 1972. Primary northupite deposition in Lake Mahega,Uganda. Science, 238: 123. [49] Li C Z,Guo P,Liu C Y. 2021. Deposition models for the widespread Eocene bedded halite in China and their implications for hydrocarbon potential of salt-associated mudstones. Marine and Petroleum Geology,130:105132. [50] Lownstein T K,Demicco R V. 2006. Elevated Eocene atmospheric CO2 and its subsequent decline. Science, 313(5795): 1928. [51] Lownstein T K,Demicco L A C,García-Veigas J. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake,California. Bulletin of the Geological Society of America, 128(9-10): 1555-1568. [52] Lownstein T K,Jagniecki E A,Carroll A R,Smith M E,Renaut R W,Owen R B. 2017. The Green River salt mystery: what was the source of the hyperalkaline lake waters? Earth-Science Reviews, 173: 295-306. [53] Ma X,Li M,Pang X,Wei X,Qian M,Tao G,Liu P,Jiang Q,Li Z,Zhao Y,Wu S. 2019. Paradox in bulk and molecular geochemical data and implications for hydrocarbon migration in the inter-salt lacustrine shale oil reservoir,Qianjiang Formation,Jianghan Basin,central China. International Journal of Coal Geology, 209: 72-88. [54] Mcnulty E. 2017. Lake Magadi and the soda lake cycle: a study of the modern sodium carbonates and of late Pleistocene and Holocene lacustrine core sediments. Masteral Thesis of Binghamton University: 1-114. [55] Milton C. 1971. Authigenic minerals of the Green River Formation. Rocky Mountain Geology, 10(1): 57-63. [56] Ortí F,Rosell L,Garcia J,Helvaci C. 2016. Sulfate-borate association(glauberite-probertite)in the Emet Basin: implications for evaporite sedimentology Middle Miocene,Turkey. Journal of Sedimentary Research, 86: 448-475. [57] Ortí F,Rosell L,Gibert L,Moragas M,Playà E,Inglès M,Rouchy J M,Calvo J P,Gimeno D. 2014. Evaporite sedimentation in a tectonically active basin: the lacustrine Las Minas Gypsum unit(Late Tortonian,SE Spain). Sedimentary Geology, 311: 17-42. [58] Pabst A. 1973. The crystallography and structure of eitelite,Na2Mg(CO3)2. American Mineralogist, 58(1): 211-217. [59] Parnell J. 1986. Devonian Magadi-type cherts in the Orcadian Basin,Scotland. Journal of Sedimentary Petrology, 56(4): 495-500. [60] Peng Q M,P Palmer M R. 1995. The Palaeoproterozoic boron deposits in eastern Liaoning,China: a metamorphosed evaporite. Precambrian Research, 72(3-4): 185-197. [61] Peng Q M,Palmer M R. 2002. The Paleoproterozoic Mg and Mg-Fe borate deposits of Liaoning and Jilin Provinces,northeast China. Economic Geology, 97(1): 93-108. [62] Salvany J M,García-Veigas J,Ortí F. 2007. Glauberite-halite association of the Zaragoza Gypsum Formation(Lower Miocene,Ebro Basin,NE Spain). Sedimentology, 54(2): 443-467. [63] Sirota I,Arnon A,Lensky N G. 2016. Seasonal variations of halite saturation in the Dead Sea. Water Resources Research, 52(9): 7151-7162. [64] Sirota I,Enzel Y,Lensky N G. 2017. Temperature seasonality control on modern halite layers in the Dead Sea: in situ observations. Bulletin of the Geological Society of America, 129(9-10): 1181-1194. [65] Sirota I,Enzel Y,Lensky N G. 2018. Halite focusing and amplification of salt layer thickness: from the Dead Sea to deep hypersaline basins. Geology, 46(10): 851-854. [66] Smith G I,Stuiver M. 1979. Subsurface Stratigraphy and Geochemistry of Late Quaternary Evaporites,Searles Lake,California. Washington: United States Government Printing Office,1-118. [67] Sumita M,Schmincke H U. 2013. Impact of volcanism on the evolution of Lake Wagoner II Temporal evolution of explosive volcanism of Nemrut Volcano(eastern Anatolia)during the past ca. 0.4 Ma. Journal of Volcanology and Geothermal Research, 253: 15-34. [68] Wang M,Sherwood N,Li Z,Lu S,Wang W,Huang A,Peng J,Lu K. 2015. Shale oil occurring between salt intervals in the Dongpu Depression,Bohai Bay Basin,China. International Journal of Coal Geology, 152: 100-112. [69] Wang T, Cao J, Carroll A R, Zhi D, Tang Y, Wang X, Li Y. 2021. Oldest preserved sodium carbonate evaporate: Late Paleozoic Fengcheng Formation, Junggar Basin, NW China. GSA Bulletin, 133: 1465-1482. [70] Warren J K. 2016. Evaporites. Springer,1-1808. [71] Yang J,Yi C,Du Y,Zhang Z,Yan J. 2015. Geochemical significance of the Paleogene soda-deposits bearing strata in Biyang Depression,Henan Province. Science China Earth Sciences, 58: 129-137. [72] Yao G,Li L,Cai M,Liu Y. 2017. Mechanisms of salinization in a Middle Eocene lake in the Tanggu area of the Huanghua Lake. Marine and Petroleum Geology, 86: 155-167.