Detection of climatic precession variability of black shale in the early Aptian of Cretaceous in Zhangye of Gansu Province and its significance
Xie Qin1,2, Chen Jia-Sheng1,2, Liu Xiao-Jing1,2, Liu Xiu-Ming1,2,3
1 Institute of Geography,Fujian Normal University,Fuzhou 350007,China; 2 Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University,Fuzhou 350007,China; 3 Department of Environment and Geography,Macquarie University,Sydney NSW2109,Australia
Abstract:The earth experienced profound environmental changes at the mid-Cretaceous when a typical representative of the greenhouse climate occurred. In the mid-Cretaceous,studies have shown that black shale in low-latitude(ca.20°~30°N)marine strata in Europe records presents obliquity signals,continental deposits are prevalent in inland China at the same latitude and during the same period,but there are few studies on the orbital-scale periodicity of continental low-latitude black shales. In this study,CaCO3 content is used as an alternative high-resolution indicator of paleoclimate,and average spectral misfit(ASM)and time scale optimization(TimeOpt)analyses are used to explore the orbital periodicity of the black shale in the Xiagou Formation of the early Aptian of Cretaceous in Nantaizi (palaeoatitude of ca 23°N),Zhangye of Gansu Province, China. The result shows that the climate is dominated by precession and eccentricity cycles,which is significantly different from the result in Europe. The exploration of this climate change not only provides new evidence for the cretaceous orbital-scale climate change in the Northwest China,but also contributes to a more comprehensive understanding of the driving mechanism of climate change in the mid-Cretaceous.
Xie Qin,Chen Jia-Sheng,Liu Xiao-Jing et al. Detection of climatic precession variability of black shale in the early Aptian of Cretaceous in Zhangye of Gansu Province and its significance[J]. JOPC, 2022, 24(2): 375-388.
[1] 陈发虎,朱艳,李吉均,施祺,靳立亚,B.Wunemann. 2001. 民勤盆地湖泊沉积记录的全新世千百年尺度夏季风快速变化. 科学通报, 46(17): 1414-1419. [Chen F H,Zhu Y,Li J J,Shi Q,Jin L Y,B.Wunemann. 2001. Rapid changes in Cenozoic centennial scale summer monsoon recorded by sediments in Minqin Basin. Chinese Science Bulletin, 46(17): 1414-1419] [2] 陈敬安,万国江,汪福顺,黄荣贵,张峰,D.D.Zhang,R.Schmidt. 2002. 湖泊现代沉积物碳环境记录研究. 中国科学(D辑: 地球科学), 32(1): 73-80. [Chen J A,Wan G J,Wang F S,Huang R G,Zhang F,D.D.Zhang,R.Schmidt.. 2002. Researches onenvironmental records of carbon from lake sedilments. Science in China(Series D: Earth Sciences), 32(1): 73-80] [3] 程海,李瀚瑛,张旭,张海伟,易亮,蔡演军,胡永云,石正国,彭友兵,赵景耀,Gayatri Kathayat,Ashish Sinha. 2020. 欧—亚—非大陆季风: 超级大陆与超级季风的雏形. 第四纪研究, 40(6): 1381-1396. [Cheng H,Li H Y,Zhang X,Zhang H W,Yi L,Cai Y J,Hu Y Y,Shi Z G,Peng Y B,Zhao J Y,G Kathayat,A Sinha. 2020. European-Asian-African continent: an early form of supercontinent and supermonsoon. Quaternary Sciences, 40(6): 1381-1396] [4] 戴霜,刘学,赵杰,张明震,刘俊伟,孔立,朱强,黄永波. 2012. 陆地沉积物对大洋缺氧事件的响应: 六盘山群黑色页岩地球化学特征及其意义. 地学前缘, 19(4): 255-259. [Dai S,Liu X,Zhao M Z,Liu J W,Kong L,Zhu Q,Huang Y B. 2012. The OAEs record in the terrestrial sediments: the geochemistry of blackshales in the Liupanshan Group and its paleoclimatic implications. Earth Science Frontiers, 19(4): 255-259] [5] 江新胜,李玉文. 1996. 中国中东部白垩纪沙漠的时空分布及其气候意义. 岩相古地理, 16(2): 42-51. [Jiang X S,Li Y W. 1996. Spatio-temporal distribution of the cretaceous deserts in central and eastern China and its climatic significance. Sedimentary Facies and Palaeogeography, 16(2): 42-51] [6] 刘秀铭,吕镔,毛学刚,温昌辉,俞鸣同,郭雪莲,陈家胜,王涛. 2014. 风积地层中铁矿物随环境变化及其启示. 第四纪研究, 34(3): 443-457. [Liu X M,Lü B,Mao X G,Wen C H,Yu M T,Guo X L,Chen J S,Wan T. 2014. Iron minerals of aeoliandeposits vary with environment and its significances. Quaternary Sciences, 34(3): 443-457] [7] 潘忠习,江新胜,傅清平. 1999. 四川盆地白垩纪沙漠沉积磁组构特征及其古风向意义. 岩相古地理, 19(1): 14-21. [Pan Z X,Jiang X S,Fu Q P. 1999. The variations of palaeowind direction of the cretaceous desert in the Sichuan Basin and their significance. Sedimentary Facies and Palaeogeography, 19(1): 14-21] [8] 钱君龙,王苏民,薛滨,陈如松,柯善哲. 1997. 湖泊沉积研究中一种定量估算陆源有机碳的方法. 科学通报, 47(15): 1655-1658. [Qian J L,Wang S M,Xue B,Chen R S, Ke S Z. 1997. A method of estimationof terrestrial organic carbon in the study of lake. Chinese Science Bulletin, 47(15): 1655-1658] [9] 宋磊,强明瑞,郎丽丽,刘星星,王亲,李明治. 2012. 16 ka BP共和盆地更尕海湖泊生产力演化历史. 科学通报, 57(19): 1763-1774. [Song L,Qiang M R,Lang L L,Liu X X,Wang Q,Li M Z. 2012. Changes inpalaeoproductivity of Genggahai Lake over the past 16 ka in the Gonghe basin,northeastern Qinghai-Tibetan Plateau. Chinese Science Bulletin, 57(19): 1763-1774] [10] 汪品先,田军,黄恩清,马文涛. 2018. 地球系统与演变. 北京: 科学出版社,490-491. [Wang P X,Tian J,Huang E Q,Ma W T. 2018. Earth Systems and Evolution. Beijing: Science Press,490-491] [11] 杨伦庆,张虎才,类延斌,雷国良,张文翔,常凤琴,庞有智. 2009. 内蒙古西部额济纳古湖小狐山剖面有机质与碳酸盐组成及其古环境意义. 第四纪研究, 29(2): 256-267. [Yang L Q,Zhang H C,Lei Y B,Lei G L,Zhang W X,Chang F Q,Pang Y Z. 2009. Compositions of the organic matter and carbonate in Xiaohushan section from Ejina Basin,western Inner Mongolia,China and their paleoenvironmental significance. Quaternary Sciences, 29(2): 256-267] [12] 杨雨. 1997. 甘肃省岩石地层. 武汉: 中国地质大学出版社,1-220. [Yang Y. 1997. Lithostratigraphic of Gansu Province. Wuhan: China University of Geosciences Press,1-220] [13] 张荷生,崔振卿. 2007. 甘肃省张掖丹霞与彩色丘陵地貌的形成与景观特征. 中国沙漠, 27(6): 942-945. [Zhang H S,Cui Z Q. 2007. Landscape character and forming of Danxia Landform and Color Hill in Zhangye of Gansu Province. Journal of Desert Research, 27(6): 942-945] [14] 张兰生,方修琦. 2012. 中国古地理: 中国自然环境的形成. 北京: 科学出版社, 1-531. [Zhang L S,Fang X Q. 2012. Palaeogeography of China: The Formation of Natural Environment in China. Beijing: Science Press,1-531] [15] Beaufort L,Lancelot Y,Camberlin P,Cayre O,Vincent E,Bassinot F,Labeyrie L. 1997. Insolation cycles as a major control of equatorial Indian Ocean primary production. Science, 278(5342): 1451-1454. [16] Beil S,Kuhnt W,Holbourn A,Scholz F,Oxmann J,Wallmann K,Lorenzen J,Aquit M,Chellai E H. 2020. Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks. Climate of the Past, 16(2): 757-782. [17] Berner R A,Kothavala Z. 2001. GEOCARB Ⅲ: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301(2): 182-204. [18] Bornemann A,Norris R D,Friedrich O,Beckmann B,Schouten S,Sinninghe Damsté J S,Vogel J,Hofmann P,Wagner T. 2008. Isotopic evidence for glaciation during the cretaceous supergreenhouse. Science, 319(5860): 189-192. [19] Cai Y,Fung I Y,Edwards R L,An Z,Cheng H,Lee J E,Tan L,Shen C C,Wang X,Day J A,Zhou W,Kelly M J,Chiang J C H. 2015. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252 000 y. Proceedings of the National Academy of Sciences, 10(112): 2954. [20] Cheng H,Edwards R L,Broecker W S,Denton G H,Kong X,Wang Y,Zhang R,Wang X. 2009. Ice age terminations. Science, 326(5950): 248-252. [21] Cheng H,Edwards R L,Sinha A,Spötl C,Yi L,Chen S,Kelly M,Kathayat G,Wang X,Li X,Kong X,Wang Y,Ning Y,Zhang H. 2016. The Asian monsoon over the past 640 000 years and ice age terminations. Nature, 534(7609): 640-646. [22] Cheng H,Zhang H,Cai Y,Shi Z,Yi L,Deng C,Hao Q,Peng Y,Sinha A,Li H. 2021. Orbital-scale Asian summer monsoon variations: paradox and exploration. Science China Earth Sciences, 64(4): 529-544. [23] Cheng H,Zhang P,Spötl C,Edwards R,Cai Y,Zhang D,Sang W,Tan M,An Z. 2012. The climatic cyclicity in semiarid-arid central Asia over the past 500 000 years. Geophysical Research Letters, 39(1): L01705. [24] Forster A,Schouten S,Moriya K,Wilson P A,Sinninghe Damsté J S. 2007. Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: sea surface temperature records from the equatorial Atlantic. Paleoceanography, 22(1): PA1219. [25] Friedrich O,Norris R D,Erbacher J. 2012. Evolution of middle to late cretaceous oceans: a 55 My record of earth's temperature and carbon cycle. Geology, 40(2): 107-110. [26] Frost G M,Coe R S,Meng Z,Peng Z,Chen Y,Courtillot V,Peltzer G,Tapponnier P,Avouac J-P. 1995. Preliminary early cretaceous paleomagnetic results from the Gansu Corridor,China. Earth and Planetary Science Letters, 129(1-4): 217-232. [27] Hasegawa H,Tada R,Jiang X,Suganuma Y,Imsamut S,Charusiri P,Ichinnorov N,Khand Y. 2012. Drastic shrinking of the Hadley circulation during the mid-cretaceous supergreenhouse. Climate of the Past, 8(4): 1323-1337. [28] Hinnov L A. 2013. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences. GSA Bulletin, 125(11-12): 1703-1734. [29] Hinnov L A. 2000. New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Sciences, 28(1): 419-475. [30] Hodell D A,Brenner M,Kanfoush S L,Curtis J H,Stoner J S,Xueliang S,Yuan W,Whitmore T J. 1999. Paleoclimate of southwestern China for the past 50 000 yr inferred from lake sediment records. Quaternary Research, 52(3): 369-380. [31] Huang C,Hinnov L,Fischer A G,Grippo A,Herbert T. 2010. Astronomical tuning of the aptian stage from Italian reference sections. Geology, 238(10): 899-903. [32] Huber B T,Norris R D,MacLeod K G. 2002. Deep-sea paleotemperature record of extreme warmth during the cretaceous. Geology, 30(2): 123-126. [33] Jenkyns H C,Forster A,Schouten S,Damsté J. 2004. High temperatures in the late cretaceous Arctic Ocean. Nature, 432(7019): 888-892. [34] Jiang X S,Pan Z,Fu Q. 2001. Primary study on pattern of general circulation of atmosphere before uplift of the Tibetan Plateau in eastern Asia. Science in China Series D: Earth Sciences, 44(8): 680-688. [35] Kathayat G,Cheng H,Sinha A,Spötl C,Edwards R L,Zhang H,Li X,Yi L,Ning Y,Cai Y,Lui W L,Breitenbach S F M. 2016. Indian monsoon variability on millennial-orbital timescales. Scientific Reports, 6(1): 1-7. [36] Laskar J,Robutel P,Joutel F,Gastineau M,Correia A C M,Levrard B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys, 428(1): 261-285. [37] Li X,Xu W,Liu W,Zhou Y,Wang Y,Sun Y,Liu L. 2013. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China. Palaeogeography,Palaeoclimatology,Palaeoecology, 385(1): 171-189. [38] Li Y X,Bralower T J,Montañez I P,Osleger D A,Arthur M A,Bice D M,Herbert T D,Erba E,Silva I P. 2008. Toward an orbital chronology for the early aptian oceanic anoxic event(OAE1a,~120 Ma). Earth and Planetary Science Letters, 271(1-4): 88-100. [39] Littler K,Robinson S A,Bown P R,Nederbragt A J,Pancost R D. 2011. High sea-surface temperatures during the early cretaceous epoch. Nature Geoscience, 4(3): 169-172. [40] Liu Z,Liu X,Huang S. 2017. Cyclostratigraphic analysis of magnetic records for orbital chronology of the lower cretaceous Xiagou Formation in Linze,northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 481: 44-56. [41] Meyers P A,Ishiwatari R. 1993. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20(7): 867-900. [42] Meyers P A,Lallier-vergés E. 1999. Lacustrine sedimentary organic matter records of late quaternary paleoclimates. Journal of Paleolimnology, 21(3): 345-372. [43] Meyers P A,Tenzer G E,Lebo M E,Reuter J E. 1998. Sedimentary record of sources and accumulation of organic matter in Pyramid Lake,Nevada,over the past 1000 years. Limnology and Oceanography, 43(1): 160-169. [44] Meyers S R. 2019. Cyclostratigraphy and the problem of astrochronologic testing. Earth-Science Reviews, 190: 190-223. [45] Meyers S R. 2015. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: an inverse approach for astrochronologic testing and time scale optimization. Paleoceanography, 30: 1625-1640. [46] Meyers S R,Sageman B B. 2007. Quantification of deep-time orbital forcing by average spectral misfit. American Journal of Science, 307(5): 773-792. [47] Meyers S R,Sageman B B,Hinnov L A. 2001. Integrated quantitative stratigraphy of the Cenomanian-Turonian bridge creek limestone member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research, 71(4): 628-644. [48] Milankovitch M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitproblem. Belgrade: Royal Serbian Academy Special Publications, 1-633. [49] Ruddiman W F. 2001. Earth's Climate: Past and Future. New York: W. H. Freeman and Company, 465. [50] Schlanger S O,Jenkyns H. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw, 55(3): 179-184. [51] Searle M,Windley B,Coward M,Cooper D,Rex A,Rex D,Tingdong L,Xuchang X,Jan M,Thakur V. 1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin, 98(6): 678-701. [52] Short D A,Mengel J G,Crowley T J,Hyde W T,North G R. 1991. Filtering of milankovitch cycles by earth's geography. Quaternary Research, 35(2): 157-173. [53] Suarez M B,Ludvigson G A,González L A,Al-Suwaidi A H,You H L. 2013. Stable isotope chemostratigraphy in lacustrine strata of the Xiagou Formation,Gansu Province,NW China. Geological Society London Special Publications, 382(1): 143-155. [54] Thomson D J. 1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9): 1055-1096. [55] Tiedemann R,Sarnthein M,Shackleton N J. 1994. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography, 9(4): 619-638. [56] Tiraboschi D,Erba E,Jenkyns H C. 2009. Origin of rhythmic Albian black shales(Piobbico core,central Italy): calcareous nannofossil quantitative and statistical analyses and paleo-ceanographic reconstructions. Paleoceanography, 24(2): PA2222. [57] Wang P,Li Q,Tian J,He J,Jian Z,Ma W,Dang H. 2016. Monsoon influence on planktic δ18O records from the South China Sea. Quaternary Science Reviews, 142: 26-39. [58] Wang S Y,Houyuan L,Liu J Q,Negendank J F W. 2007. The early Holocene optimum inferred from a high-resolution pollen record of Huguangyan Maar Lake in southern China. Chinese Science Bulletin, 52(20): 2829-2836. [59] Wang Y,Cheng H,Edwards R L,He Y,Kong X,An Z,Wu J,Kelly M J,Dykoski C A,Li X. 2005. The holocene asian monsoon: links to solar changes and north atlantic climate. Science, 308(5723): 854-857. [60] Wilson P A,Norris R D,Cooper M J. 2002. Testing the cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the turonian tropics on demerara rise. Geology, 30(7): 607-610. [61] Xi D,Wan X,Li G,Gang L. 2019. Cretaceous integrative stratigraphy and timescale of China. Science China Earth Science, 62(1): 256-286. [62] Zhang X,Chen K,Hu D,Sha J. 2016. Mid-Cretaceous carbon cycle perturbations and oceanic anoxic events recorded in southern Tibet. Scientific Reports, 6(1): 39643.