Control mechanisms of tectonic paleogeomorphology on the Early Cretaceous sedimentary basin fills in Ta'nan sag,Tamtsag Basin,Mongolia
Zhou Yong1,2, Ji You-Liang1,2, Meng Qi-An3, Wan Hong-Feng1,2, Zhang Ge3, Ren Yu-Tao1,2, Yan Ke-Xin1,2, Liang Tao1,2, Chen Fu-Yu1,2, Qiang Zhi-Cheng1,2
1 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 2 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China; 3 Daqing Oilfield Limited Company,Heilongjiang Daqing 163000,China
Abstract:The Ta'nan sag is a typical faulted lacustrine basin formed during the Early Cretaceous,which experienced multi-stage episodic faulting activities. Tectonic activities are an important factor for the formation of paleogeomorphology and sand distribution. However,the controls of paleogeomorphologies generated by synsedimentary tectonic activities on sequence architectures,sedimentary system and sand body distribution are still unclear. Based on seismic,well logging and core data,under the guidance of sequence stratigraphy theory and paleogeomorphic sand control theory,the sequence-stratigraphic frameworks of the Lower Cretaceous in the Ta'nan sag are established. Combined with the analysis of the major fault activity during different rifting stages,the controlling effects of different paleogeomorphologies on sedimentary system and sand body distribution are clarified. The investigation of the tectonic evolution and sediment fill of the Ta'nan sag during the Early Cretaceous suggests that the episodic rifting and various activities of major faults created complex paleogeomorphologies including transfer zones and structural slope-break zones,which significantly controlled the development and distribution of both depositional systems and sand bodies. The transfer zones including transverse uplift and relay ramp were the sites for drainage catchment,and controlled the locations of sedimentary provenances,entry points of sedimentary material into the basin,and the resultant development of depositional systems. According to fault geometry and the location of the slope-break zones,the structural slope-break zones of the Ta'nan sag during the climax rifting stage were subdivided into four types: fault scarp zone,fault terrace zone,gentle slope zone and intrabasinal fault break zone,which played significant roles in controlling the changes in accommodation and the distribution of depositional systems and sand bodies. Three syndepostional fault arrangement patterns were identified according to their distribution on the structural map,which are “comb-like”,“fork-like and “parallel”faults. Areas where the structural slope-break zone overlapped with transfer zones are sites for major drainage systems and the optimum locations of fan deltas and sublacustrine fans. The sand bodies deposited here are favorable targets for the exploration of litho-stratigraphic traps in the Ta'nan sag. The results have important theoretical significance and practical value for deepening the theory of source-to-sink system and guiding the prediction of sand body distribution in faulted lacustrine basins.
Zhou Yong,Ji You-Liang,Meng Qi-An et al. Control mechanisms of tectonic paleogeomorphology on the Early Cretaceous sedimentary basin fills in Ta'nan sag,Tamtsag Basin,Mongolia[J]. JOPC, 2022, 24(3): 493-511.
[1] 陈刚,戴俊生,叶兴树,荣磊,梁颖. 2007. 生长指数与断层落差的对比研究. 西南石油大学学报, 29(3): 20-23. [Chen G,Dai J S,Ye X S,Rong L,Liang Y.2007. A comparison of fault growth index with fault throw. Journal of Southwest Petroleum University, 29(3): 20-23] [2] 陈玮常,漆家福,姜洪福,刘学,孙加华,辛世伟. 2013. 蒙古国东方省海塔盆地塔南凹陷断裂特征及其油气意义. 古地理学报, 15(4): 539-550. [Chen W C,Qi J F,Jiang H F,liu X,Sun J H,Xin S W.2013. Characteristics of fault structure in Tanan sag,Haita Basin in Dornod Aymag,Mongolia and its hydrocarbon significance. Journal of Palaeogeography(Chinese Edition), 15(4): 539-550] [3] 邓宏文,王红亮,王敦则. 2001. 古地貌对陆相裂谷盆地层序充填特征的控制: 以渤中凹陷西斜坡区下第三系为例. 石油与天然气地质, 22(4): 293-296. [Deng H W,Wang H L,Wang D Z.2001. Control of paleomorphology to stratigraphic sequence in continental rift basins: take Lower Tertiary of western slope in Bozhong Sag as an example. Oil & Gas Geology, 22(4): 293-296] [4] 邓宏文,郭建宇,王瑞菊,谢小军. 2008. 陆相断陷盆地的构造层序地层分析. 地学前缘, 15(2): 1-7. [Deng H W,Guo J Y,Wang R J,Xie X J.2008. Tectono-sequence stratigraphic analysis in continental faulted basins. Earth Science Frontiers, 15(2): 1-7] [5] 冯有良. 2006. 断陷湖盆沟谷及构造坡折对砂体的控制作用. 石油学报, 27(1): 13-16. [Feng Y L.2006. Control of valley and tectonic slope-break zone on sand bodies in rift-subsidence basin. Acta Petrolei Sinica, 27(1): 13-16] [6] 冯有良,徐秀生. 2006. 同沉积构造坡折带对岩性油气藏富集带的控制作用: 以渤海湾盆地古近系为例. 石油勘探与开发, 33(1): 22-31. [Feng Y L,Xu X S.2006. Syndepositional structural slope-break zone controls on lithologic reservoirs: a case from Paleogene Bohai Bay Basin. Petroleum Exploration and Development, 33(1): 22-31] [7] 冯有良,周海民,任建业,郑和荣,苗顺德. 2010. 渤海湾盆地东部古近系层序地层及其对构造活动的响应. 中国科学: 地球科学, 40(10): 1356-1376. [Feng Y L,Zhou H M,Ren J Y,Zheng H R,Miao S D.2010. Paleogene sequence stratigraphy in the east of the Bohai Bay Basin and its response to structural movement. Science China: Earth Science, 40(10): 1356-1376] [8] 侯宇光,何生,王冰洁,倪军娥,廖远涛. 2010. 板桥凹陷构造坡折带对层序和沉积体系的控制. 石油学报, 31(5): 754-761. [Hou Y G,He S,Wang B J,Ni J E,Liao Y T.2010. Constraints by tectonic slope-break zones on sequences and depositional systems in the Banqiao Sag. Acta Petrolei Sinica, 31(5): 754-761] [9] 付晓飞,孙兵,王海学,孟令东. 2015. 断层分段生长定量表征及在油气成藏研究中的应用. 中国矿业大学学报, 44(2): 271-281. [Fu X F,Sun B,Wang H X,Meng L D.2015. Fault segmentation growth quantitative characterization and its application on sag hydrocarbon accumulation research. Journal of China University of Mining & Technology, 44(2): 271-281] [10] 胡贺伟,李慧勇,于海波,肖述光,徐伟. 2020. 渤海湾盆地埕北低凸起及围区古近系“源-汇”系统控砂原理定量分析. 古地理学报, 22(2): 266-277. [Hu H W,Li H Y,Yu H B,Xiao S G,Xu W.2020. Quantitative analysis of source-to-sink system controls on sand-body distribution of the Paleogene in Chengbei low uplift and surrounding areas,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 22(2): 266-277] [11] 纪友亮,曹瑞成,蒙启安,张革,渠永红. 2009a. 塔木察格盆地塔南凹陷下白垩统层序结构特征及控制因素分析. 地质学报, 83(6): 827-835. [Ji Y L,Cao R C,Meng Q A,Zhang G,Qu Y H.2009a. Analysis of sequence structure and its controlling factors in Lower Cretaceous in Tanan Sag,Tamuchage Basin. Acta Geologica Sinica, 83(6): 827-835] [12] 纪友亮,蒙启安,曹瑞成,张革. 2009b. 贝南凹陷古地形对层序结构及沉积充填的控制. 同济大学学报: 自然科学版, 37(11): 1541-1545. [Ji Y L,Meng Q A,Cao R C,Zhang G.2009b. Control of paleomorphology to sequence and sedimentary system in south Beir Sag. Journal of Tongji University(Natural Science), 37(11): 1541-1545] [13] 林畅松. 2006. 沉积盆地的构造地层分析: 以中国构造活动盆地研究为例. 现代地质, 20(2): 185-194. [Lin C S.2006. Tectono-stratigraphic analysis of sedimentary basins: a case study on the inland tectonically active basins in China. Geoscience, 20(2): 185-194] [14] 林畅松,郑和荣,任建业,刘景彦,邱以刚. 2003. 渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制. 中国科学: D辑, 33(11): 1025-1036. [Lin C S,Zheng H R,Ren J Y,Liu J Y,Qiu Y G.2003. The control of syndepositional faulting on the Eogene sedimentary basin fills of Dongying and Zhanhua sags,Bohaiwan Rift Basin. Science China(D), 33(11): 1025-1036] [15] 林畅松,夏庆龙,施和生,周心怀. 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20. [Lin C S,Xia Q L,Shi H S,Zhou X H.2015. Geomorphological evolution,source to sink system and basin analysis. Earth Science Frontiers, 22(1): 9-20] [16] 刘哲,吕延防,孙永河,李彦彬,张东伟. 2012. 同生断裂分段生长特征及其石油地质意义: 以辽河西部凹陷鸳鸯沟断裂为例. 中国矿业大学学报, 41(5): 793-799. [Liu Z,Lü Y F,Sun Y H,Li Y B,Zhang D W.2012. Characteristics and significance of syngenetic fault segmentation in hydrocarbon accumulation: an example of Yuanyanggou fault in western sag,Liaohe Sag. Journal of China University of Mining & Technology, 41(5): 793-799] [17] 蒙启安,纪友亮. 2009. 塔南凹陷白垩纪古地貌对沉积体系分布的控制作用. 石油学报, 30(6): 843-848. [Meng Q A,Ji Y L.2009. Controlling of paleo geomorphology to distribution of sedimentary system in the Cretaceous of Tanan Sag. Acta Petrolei Sinica, 30(6): 843-848] [18] 庞雄,彭大钧,陈长民,朱明,何敏,申俊,柳保军. 2007. 三级“源—渠—汇”耦合研究珠江深水扇系统. 地质学报, 81(6): 857-864. [Pang X,Peng D J,Chen C M,Zhu M,He M,Shen J,Liu B J.2007. Three hierarchies “source-conduit-sink”coupling analysis of the Pearl River deep-water fan system. Acta Geologica Sinica, 81(6): 857-864] [19] 单敬福,王峰,孙海雷,孙继刚,蒙启安. 2010. 蒙古国境内贝尔湖凹陷早白垩世沉积充填演化与同沉积断裂的响应. 吉林大学学报(地球科学版), 40(3): 509-518. [Shan J F,Wang F,Sun H L,Sun J G,Meng Q A.2010. The responding to syn-sedimentary fault system for sediment filling evolvement in the Early Cretaceous,Bel-Lake Sag of Mongolia. Journal of Jilin University(Earth Science Edition), 40(3): 509-518] [20] 隋立伟. 2020. 塔南凹陷古地貌特征对沉积体系和油气分布的影响. 岩性油气藏, 32(4): 48-58. [Sui L W.2020. Influence of paleogeomorphic characteristics on sedimentary system and hydrocarbon distribution in Tanan Sag. Lithologic Reservoirs, 32(4): 48-58] [21] 王家豪,王华,肖敦清,韦阿娟,廖远涛. 2008. 伸展构造体系中传递带的控砂作用: 储层预测的新思路. 石油与天然气地质, 29(1): 19-25. [Wang J H,Wang H,Xiao D Q,Wei A J, Liao Y T.2008. Control of transfer zone on sandbodies in the extensional structure system: a new approach to reservoir prediction. Oil & Gas Geology, 29(1): 19-25] [22] 王英民,金武弟,刘书会,邱桂强,李群,刘豪,辛仁臣,杨飞. 2003. 断陷湖盆多级坡折带的成因类型、展布及其勘探意义. 石油与天然气地质, 24(3): 199-214. [Wang Y M,Jin W D,Liu S H,Qiu G Q,Li Q,Liu H,Xin R C,Yang F.2003. Genetic types,distribution and exploration significance of multistage slope breaks in rift lacustrine basin. Oil & Gas Geology, 24(3): 199-214] [23] 王纪祥,陈发景,李趁义. 2003. 山东惠民凹陷伸展构造及调节带特征. 现代地质, 17(2): 203-209. [Wang J X,Chen F J,Li C Y.2003. Character of the extensional structures and accommodation zones in the Huimin Sag,Shandong Province. Geoscience, 7(2): 203-209] [24] 徐长贵. 2013. 陆相断陷盆地源-汇时空耦合控砂原理: 基本思想、概念体系及控砂模式. 中国海上油气, 25(4): 1-11. [Xu C G.2013. Controlling sand principle of source-sink coupling in time and space in continental rift basins: basic idea,conceptual systems and controlling sand models. China Offshore Oil and Gas, 25(4): 1-11] [25] 徐长贵,杜晓峰. 2017. 陆相断陷盆地源-汇理论工业化应用初探: 以渤海海域为例. 中国海上油气, 29(4): 9-18. [Xu C G,Du X F.2017. Industrial application of source-to-sink theory in continental rift basin: a case study of Bohai sea area. China Offshore Oil and Gas, 29(4): 9-18] [26] 徐长贵,杜晓峰,徐伟,赵梦. 2017. 沉积盆地“源-汇”系统研究新进展. 石油与天然气地质, 38(1): 1-11. [Xu C G,Du X F,Xu W,Zhao M.2017. New advances of the “Source-to-Sink”system research in sedimentary basin. Oil & Gas Geology, 38(1): 1-11] [27] 严德天,王华,王清晨. 2008. 中国东部第三系典型断陷盆地幕式构造旋回及层序地层特征. 石油学报, 29(2): 185-190. [Yan D T,Wang H,Wang Q C.2008. Episodic tectonic cycles and sequence pattern of the Tertiary rifted basins of East China. Acta Petrolei Sinica, 29(2): 185-190] [28] 杨永华,纪友亮,曹瑞成,蒙启安. 2009. 蒙古塔木察格盆地塔南凹陷下白垩统层序结构类型控制因素与层序发育模式. 现代地质, 23(4): 655-666. [Yang Y H,Ji Y L,Cao R C, Meng Q A.2009. Types of sequences,controlling factors and sequence models for Lower Cretaceous of Tanan Sag in Tamtsag Basin,Mongolia. Geoscience, 23(4): 655-666] [29] 曾智伟,朱红涛,杨香华,夏晨晨,陈莹,韩银学. 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936-1954. [Zeng Z W,Zhu H T,Yang X H,Xia C C,Chen Y,Han Y X.2017. Provenance transformation and sedimentary evolution of Enping Formation Baiyun Sag,Pearl River Mouth Basin. Earth Science, 42(11): 1936-1954] [30] 张宗檩. 2004. 济阳坳陷低级序断层组合样式及成因机制. 石油大学学报(自然科学版), 28(3): 1-3,12. [Zhang Z L.2004. Mechanism and patterns of the lower-order faults in Jiyang Sag. Journal of the University of Petroleum(Natural Science Edition), 28(3): 1-3,12] [31] 朱红涛,徐长贵,朱筱敏,曾洪流,姜在兴,刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870. [Zhu H T,Xu C G,Zhu X M,Zeng H L,Jiang Z X,Liu K Y.2017. Advances of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851-1870] [32] Allen P A.2008. From landscapes into geological history. Nature, 451(7176): 274-276. [33] Allen P A.2017. Sediment Routing Systems: The Fate of Sediment from Source to Sink. Cambridge University Press. [34] Du X F,Xu C G,Pang X J,Wang Q B,Wang Q M,Zhao M.2017. Quantitative reconstruction of source-to-sink systems of the first and second members of the Shahejie Formation of the eastern Shijiutuo uplift,Bohai Bay Basin,China. Interpretation, 5(4): 85-102. [35] Gawthorpe R L.2000. Tectono-sedimentary evolution of active extensional basins. Basin Research, 12: 195-218. [36] Gawthorpe R L,Hurst J M.1993. Transfer zones in extensional basins: their structural style and influence on drainage development and stratigraphy. Journal of the Geological Society, 150: 1137-1152. [37] Hou Y,He S,Ni J,Wang B.2012. Tectono-sequence stratigraphic analysis on Paleogene Shahejie Formation in the Banqiao sub-basin,Eastern China. Marine and Petroleum Geology, 36(1): 100-117. [38] Liu Z,Zhao Y,Colin C,Stattegger K,Wiesner M G,Huh C,Zhang Y,Li X,Sompongchaiyakul P,You C,Huang C,Liu J T,Siringan F P,Le K P,Sathiamurthy E,Hantoro W S,Liu J,Tuo S,Zhao S,Zhou S,He Z,Wang Y,Bunsomboonsakul S,Li Y.2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153: 238-273. [39] Morley C K,Nelson R A,Patton T L,Mun S G.1990. Transfer zone in the east African rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74: 1234-1253. [40] Nelson R A,Patton T L,Morley C K.1992. Rift-segment interaction and its relation to hydrocarbon exploration in continental rift systems. AAPG Bulletin, 76: 1153-1169. [41] Peacock D C P.1994. Geometry and development of relay ramps in normal fault systems. AAPG Bulletin, 78: 147-165. [42] Xu C G,Du X F,Zhu H T,Jia D H,Xu W,Lu H.2017. Source-to-sink system and its sedimentary records in the continental rift basins: an example from the Paleogene in the Bohai Sea area,China. Interpretation, 5(4): 35-51. [43] Zhou Y,Ji Y L,Pigott J D,Meng Q A,Wan L.2014. Tectono-stratigraphy of Lower Cretaceous Tanan sub-basin,Tamtsag Basin,Mongolia: sequence architecture,depositional systems and controls on sediment infill. Marine and Petroleum Geology, 49: 176-202.