New lithological cognition of Guanyinqiao bed at Guanyinqiao section in Qijiang area,Chongqing,Southwest China
SHI Zhiqiang1,2, PENG Shenyuan1,2, ZHAO Ankun3, GE Yu1, LI Changhao1,2
1 Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China; 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China; 3 Chengdu Geological Survey Center,China Geological Survey,Chengdu 610081,China
Abstract:The Upper Ordovician Guanyinqiao bed was established based on the Guanyinqiao section located in Qijiang area,Chongqing. In this section,the successive sequence of the Upper Ordovician and Lower Silurian was well developed and widely studied. The Guanyinqiao bed belongs to the uppermost part of the Ordovician strata,with plenty of typical Hirnantia fossils developed,reflecting the decline of sea level in the Hirnantian glaciation. Previous studies believed that the lithology of Guanyinqiao bed is limestone. However,the faint bubbles occur after dripping the diluted hydrochloric acid on rocks. Thin sections,scanning electron microscope(SEM),and cathode luminescence tests show that the content of dolomite in the Guanyinqiao bed is larger than 50%,while the content of calcite is less than 15%. The dolomite shows the microcrystalline-powder crystal structure,euhedral to subhedral crystal. Therefore,the lithology of Guanyinqiao bed should be revised to lime dolostone. The dolomite is nonluminous under cathode luminescence,and calcite presents the strong red light. Most of the dolomite should be ferruginous dolomite according to the SEM tests. The observation of thin sections reveals that dedolomitization occurs for some dolomites,indicating that these dolomites were replaced by calcites. The carbon isotopes in dolomites have the larger negative anomaly compared with that of brachiopod fossils and calcite veins. Furthermore,the carbon and oxygen isotope in the brachiopod fossils is inconsistent with the sea during the same period. The above studies implied that strong dolomitization occurred for the carbonates of Guanyinqiao bed during the diagenetic stage. The results from this paper is inconsistent with the previous studies on the lithology of Guanyinqiao bed in Qijiang area. The identification of dolomite is helpful in understanding the evolution of environment and geological events during the transition interval between the Ordovician and Silurian.
SHI Zhiqiang,PENG Shenyuan,ZHAO Ankun et al. New lithological cognition of Guanyinqiao bed at Guanyinqiao section in Qijiang area,Chongqing,Southwest China[J]. JOPC, 2023, 25(1): 43-55.
[1] 高翔,王平康,李秋英,王成善,高远. 2010. 松科1井嫩江组湖相含铁白云石的准确定名和矿物学特征. 岩石矿物学杂志, 29(2): 213-218. [Gao X,Wang P K,Li Q Y,Wang C S,Gao Y. 2010. The precise naming and mineralogical characteristics of ferruginous lacustrine dolomite in Well CCSD-SK. Acta Petrological et Mineralogica, 29(2): 213-218] [2] 高振中,何幼斌,李罗照,卿崇文,肖明国,程四洪,张文成,刘伟伟. 2008. 中国南方上奥陶统五峰组观音桥段成因讨论: 是“浅水介壳相”还是深水异地沉积?. 古地理学报, 10(5): 487-494. [Gao Z Z,He Y B,Luo L Z,Qing C W,Xiao M G,Cheng S H,Zhang W C,Liu W W. 2008. Genesis of the Guanyinqiao Member of Upper Ordovician Wufeng Formation in southern China: “shallow water shelly facies”or deep-water allogenic deposition? Journal of Palaeogeography(Chinese Edition), 10(5): 487-494] [3] 金之钧,胡宗全,高波,赵建华. 2016. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1-10. [Jin Z J,Hu Z Q,Gao B,Zhao J H. 2016. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin. Earth Science Frontiers, 23(1): 1-10] [4] 李波,颜佳新,刘喜停,薛武强. 2010. 白云岩有机成因模式: 机制、进展与意义. 古地理学报, 12(6): 699-710. [Li B,Yan J X,Liu X T,Xue W Q. 2010. The organogenic dolomite model: mechanism,progress and significance. Journal of Palaeogeography(Chinese Edition), 12(6): 699-710] [5] 柳益群,李红,朱玉双,胡亭,傅国斌,刘洪福,周小虎,郑朝阳,樊婷婷. 2010. 白云岩成因探讨: 新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩. 沉积学报, 28(5): 861-867. [Liu Y Q,Li H,Zhu Y S,Hu T,Fu G B,Liu H F,Zhou X H,Zheng C Y,Fan T T. 2010. Permian lacustrine eruptive hydrothermal dolomites,Santanghu Basin,Xinjiang Province. Acta Sedimentologica Sinica, 28(5): 861-867] [6] 卢衍豪. 1959. 中国南部奥陶纪地层分类和对比. 北京: 地质出版社,1-113. [Lu Y H. 1959. Subdivision and Correlation of the Ordovician Rocks of Southern China. Beijing: Geological Publishing House,1-113] [7] 穆恩之. 1954. 论五峰页岩. 古生物学报, 2(2): 153-170. [Mu E Z. 1954. The graptolite shale. Acta Palaeontologica Sinica, 2(2): 153-170] [8] 覃嘉铭,徐永生,尹国师. 1987. 四川省綦江县观音桥奥陶—志留系界线时限的研究. 中国区域地质,(3): 257-262. [Qin J M,Xu Y S,Yin G S. 1987. Study of the age of the Ordovician-Silurian Boundary in Guanyinqiao,Qijiang,Sichuan. Regional Geology of China,(3): 257-262] [9] 戎嘉余. 1979. 中国的赫南特贝动物群(Hirnatia fauna)并论奥陶系与志留系的分界. 地层学杂志, 3(1): 1-29. [Rong J Y. 1979. The Hirnantia fauna of China with the comments on the Ordovician-Silurian boundary. Journal of Stratigraphy, 3(1): 1-29] [10] 戎嘉余. 1984. 上扬子区晚奥陶世海退的生态地层证据与冰川活动影响. 地层学杂质, 8(1): 19-29. [Rong J Y. 1984. Ecostratigraphic evidence of the Upper Ordovician regressive sequences and the effect of glaciation. Journal of Stratigraphy, 8(1): 19-29] [11] 戎嘉余,陈旭. 1987. 华南晚奥陶世的动物群分异及生物相、岩相分布模式. 古生物学报, 26: 507-535. [Rong J Y,Chen X. 1987. Faunal differentiation,biofacies and lithofacies pattern of Late Ordovician(Ashgillian)in South China(in Chinese). Acta Palaeontologica Sinica, 26: 507-535] [12] 涂珅. 2015. 中上扬子区奧陶—志留之交无机碳同位素负漂移事件及其成因探讨. 中国地质大学硕士学位论文. [Tu K. 2015. The preliminary interpretation of the negative excursion event of inorganic carbon isotopes and the mechanism across the Ordovician-Silurian boundary in the Middle and Upper Yangtze Region. Masteral dissertation of China University of Geoscience] [13] 王传尚,汪啸风,陈孝红,李志宏. 2003. 奥陶纪末期层序地层学研究. 地球科学, 28(1): 6-10. [Wang C S,Wang X F,Chen X H,Li Z H. 2011. Study of sequence stratigraphy at terminal of Ordovician. Earth Science, 28(1): 6-10] [14] 于深洋. 2017. 华南板块上扬子区奥陶纪—志留纪之交的岩相古地理. 中国科学院大学博士学位论文. [Yu S Y. 2017. Lithofacies palaeogeography through the Ordovician and Silurian transition in Upper Yangtze Platform,South China Block. Doctoral dissertation of University of Chinese Academy of Sciences] [15] 肖传桃,姜衍文,朱忠德,李艺斌,潘云唐. 1996. 湖北宜昌地区奥陶纪层序地层及扬子地区五峰组沉积环境的讨论. 高校地质学报, 2(3): 339-347. [Xiao C T,Jiang Y W,Zhu Z D,Li Y B,Pan Y T. 1996. A study on Ordovician sequence stratigraphy in Yichang District,Hubei Province and sedimentary environment of the Wufeng Formation in Yangtze area. Geological Journal of China Universities, 2(3): 339-347] [16] 谢尚克,汪正江,王剑. 2011. 黔东北地区晚奥陶世岩相古地理. 古地理学报, 13(5): 539-549. [Xie S K,Wang Z J,Wang J. 2011. Lithofacies palaeogeography of the Late Ordovician in northeastern Guizhou Province. Journal of Palaeogeography(Chinese Edition), 13(5): 539-549] [17] 徐论勋,肖传桃,龚文平,何幼斌. 2004. 论扬子地区上奥陶统五峰组观音桥段的深海成因. 地质学报, 78(6): 726-732. [Xu L X,Xiao C T,Gong W P,He Y B. 2004. A study on the deep-sea sediment of the Guanyinqiao Member of the Upper Ordovician Wufeng Formation in the Yangtze area. Acta Geologica Sinica, 78(6): 726-732] [18] 由雪莲,孙枢,朱井泉,刘玲,何凯. 2011. 微生物白云岩模式研究进展. 地学前缘, 18(4): 52-64. [You X L,Sun S,Zhu J Q,Liu L,He K. 2011. Progress in the study of microbial dolomite model. Earth Science Frontiers, 18(4): 52-64] [19] 由雪莲,贾文强,徐帆,刘仪. 2018. 铁白云石矿物学特征及原生次生成因机制. 地球科学, 43(1): 4046-4055. [You X L,Jia W Q,Xu F,Liu Y. 2018. Mineralogical characteristics of ankerite and mechanisms of primary and secondary origins. Earth Science, 43(1): 4046-4055] [20] 尹伯传. 1988. 扬子区晩奥陶世到早志留世海洋生物群的阶段性更替及观音桥组的时代,江汉石油学院学报, 10(1): 32-37. [Yin B C. 1988. A Phasic Alternation of Marine Biota from late Ordovician to Early Silurian and the Geological age of the Guanyinqiao Formation. Journal of Jianghan Petroleum Institute, 10(1): 32-37] [21] 张柏桥,孟志勇,刘莉,李凯,刘超,舒志恒. 2018. 四川盆地涪陵地区五峰组观音桥段成因分析及其对页岩气开发的意义. 石油实验地质, 40(1): 30-37,43. [Zhang B Q,Meng Z Y,Liu L,Li K,Liu C,Shu Z H. 2018. Significance of shale gas genesis to the development of Guanyinqiao Member,Wufeng Formation,Fuling area,Sichuan Basin. Petroleum Geology & Experiment, 40(1): 30-37,43] [22] 张军涛,何治亮,岳小娟,孙宜朴,金晓辉,陈霞. 2017. 鄂尔多斯盆地奥陶系马家沟组五段富铁白云石成因. 石油与天然气地质, 38(4): 776-783. [Sun J T,He Z L,Yue X J,Sun Y P,Jin X H,Chen X. 2017. Genesis of iron-rich dolostones in the 5th member of the Majiagou Formation of the Ordovician in Ordos Basin. Oil & Gas Geology, 38(4): 776-783] [23] 张琳娜,樊隽轩,陈清. 2016. 华南上奥陶统观音桥层的空间分布和古地理重建. 科学通报, 61(18): 2053-2063. [Zhang L N,Fan J X,Chen Q. 2016. Geographic distribution and palaeogeographic reconstruction of the Upper Ordovician Kuanyinchiao Bed in South China. Chinese Science Bulletin, 61(18): 2053-2063] [24] 张雪飞,郑绵平,陈文西,叶传永,雒洋冰,孔维刚. 2015. 可可西里盆地东部五道梁群热水湖相成因新认识. 地球学报, 36(4): 507-512. [Zhang X F,Zheng M P,Chen W X,Ye C Y,Luo Y B,Kong W G. 2015. Some new opinions concerning the genesis of the lacustrine hydrothermal deposits in Wudaoliang Group,eastern Hoh Xil Basin. Acta Geoscientica Sinica, 36(4): 507-512] [25] 赵明胜,王约,陈洪德,尹海鉴. 2010. 渝南—黔北奥陶系五峰组的同生变形构造及其地质意义. 地质论评, 56(2): 174-179. [Zhao M S,Wang Y,Chen H D,Yin H J,Hou M C. 2010. Contemporaneous deformed structures in Ordovician Wufeng Formation in southern Chongqing and northern Guizhou and its geological significances. Geological Review, 56(2): 174-179] [26] 郑荣才,王成善,朱利东,刘红军,方国玉,杜文博,王崇孝,汪满福. 2003. 酒西盆地首例湖相“白烟型”喷流岩—热水沉积白云岩的发现及其意义. 成都理工大学学报(自然科学版), 30(1): 1-8. [Zheng R C,Wang C S,Zhu L D,Liu H J,Fang G Y,Du W B,Wang C X,Wang M F. 2003. Discovery of the first example of “White Smoke Type” of Exhalative Rock(Hydrothermal Sedimentary Dolostone)in Jiuxi Basin and its significance. Journal of Chengdu University of Technology(Science & Technology Edition), 30(1): 1-8] [27] Bergstroem S M,Saltzman M M,Schmitz B. 2006. First Record of the Hirnantian(Upper Ordovician)δ13C excursion in the North American Midcontinent and its regional implications. Geological Magazine, 143(5): 657-678. [28] Bojanowski M J. 2014. Authigenic dolomites in the Eocene-Oligocene organic carbon-rich shales from the Polish Outer Carpathians: evidence of past gas production and possible gas hydrate formation in the Silesian Basin. Marine and Petroleum Geology, 51: 117-135. [29] Brenchley P J,Marshall J D,Carden G A F,Robertson D B R,Long D G F,Meidla T,Hints L,Anderson T F. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology, 22: 295-298. [30] Chen C,Wang J S,Algeo J T,Wang Z,Tu S,Wang G Z,Yang J X. 2017. Negative δ13Ccarb shifts in Upper Ordovician(Hirnantian)Guanyinqiao Bed of South China linked to diagenetic carbon fluxes. Palaeogeography,Palaeoclimatology,Palaeoecology, 487: 430-446. [31] Chen C,Wang J S,Algeo T J,Chen X H,Wang Z,Ma X C,Cen Y,Zhao J. 2020. New evidence for compaction-driven vertical fluid migration into the Upper Ordovician(Hirnantian)Guanyinqiao bed of south China. Palaeogeography,Palaeoclimatology,Palaeoecology, 550: 109746. [32] Chen X. 1984. Influence of the Late Ordovician glaciation on basin configuration of the Yangtze Platform in China. Lethaia, 17(1): 51-59. [33] He X Y,Chen J Q,Xiao J Y. 2007. Combination features,paleobiogeographic affinity and mass extinction of the latest Ordovician(Hirnantian)rugosan fauna from northern Guizhou,China. Acta Geologica Sinca, 81(1): 23-41. [34] Hu X L,Müller I A,Zhao A K,Ziegler M,Chen Q,Han L,Shi Z Q. 2022. Clumped isotope thermometry reveals diagenetic origin of the dolomite layer within late Ordovician black shale of the Guanyinqiao Bed(SW China). Chemical Geology, 588: 1-14. [35] Jones D S,Brothers R W,Ahm A-S C,Slater N,Higgins J,Fike D A. 2020. Sea level,carbonate mineralogy,and early diagenesis controlled δ13C records in Upper Ordovician carbonates. Geology, 48: 194-199. [36] Lohmann K C,Walker J C G. 1989. The δ18O record of Phanerozoic abiotic marine calcite cements. Geophysical Research Letters, 16(4): 319-322. [37] Passier H F,Middelburg J J,De Lange G J,Bottcher M E. 1997. Pyrite contents,microtextures,and sulfur isotopes in relation to formation of the youngest eastern mediterranean sapropel. Geology, 25(6): 519-522. [38] Popp B N,Anderson T F,Sandberg P A. 1986. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. GSA Bulletin, 97(10): 1262-1269. [39] Rong J Y,Chen X,Happer D A T. 2002. The latest Ordovician Hirnantia Fauna(Brachiopoda)in time and space. Lethaia, 35: 231-249. [40] Shuster A M,Wallace W M,Hood S A,Jiang G Q. 2018. The Tonian Beck Spring Dolomite: marine dolomitization in a shallow,anoxic sea. Sedimentary Geology, 368: 83-104. [41] Vasconcelos C,McKenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions(Lagoa Vermelha,Riode Janeiro,Brazil). Journal of Sedimentary Research, 67(3): 378-390. [42] Wilkin R T,Barnes H L,Brantley S L. 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. [43] Wood R,Bowyer F,Penny A,Poulton S W. 2018. Did anoxia terminate Ediacaran benthic communities?evidence from early diagenesis. Precambrian Research, 313: 134-147. [44] Zhan R B,Liu J B,Percival I G,Jin J S,Li G P. 2010. Biodiversification of Late Ordovician Hirnantia fauna on the Upper Yangtze Platform,South China. Science China: Earth Sciences, 53(12): 1800-1810.