Hydrothermal activity temperature constrained by fractionation degree of sulfur isotope in symbiotic metal sulfide: a case study of the Lower Cambrian Longwangmiao Formation in central Sichuan Basin,China
LIU Dawei1, CAI Chunfang2, HU Yongjie3, JIANG Lei2, WANG Shi1, PENG Yanyan2, LI Yingtao1, LI Han'ao1
1 Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 100083,China; 2 Key Laboratory of Cenozoic Geology and Environment,Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing 100029,China; 3 International Petroleum Exploration and Production Corporation,SINOPEC,Beijing 100029,China
Abstract:The study of sulphur cycle and sulphur isotope(δ34S)fractionation is significant for diagenesis of surface sphere,where the fractionation degree of sulphur isotope between multiple metal sulphides can be used to constrain the temperature of ore-forming hydrothermal fluid,which can act as the geothermometer of hydrothermal activity. The hydrothermal transformation in the reservoir of Longwangmiao Formation in the Sichuan Basin affects the heterogeneity of the reservoir. In this paper,the co-precipitation of pyrite(FeS2)-chalcopyrite(CuFeS2)associated with hydrothermal diagenetic dolomite in the target formation is studied in detail. The sulphur isotope distribution in the metal sulphides is measured based on the NanoSIMS. The mineralization temperature was calculated based on the degree of equilibrium fractionation between multiple sulphides driven by the thermodynamics,which in turn constrains the hydrothermal process of the specific formation. Results show that(1)the sulphur isotope distribution in the microzone implies that both the thermodynamic fractionation and kinetic fractionation occur during the co-precipitation of pyrite(FeS2)and chalcopyrite(CuFeS2),where the degree of kinetic fractionation can reach 40.1‰. The influence of kinetic fractionation can be effectively excluded based on the NanoSIMS to obtain thermodynamic equilibrium fractionation data;(2)there may exist different sulfur sources during the pyrite(FeS2)and chalcopyrite(CuFeS2)mineralization processes. The pyrite precipitation primarily utilizes the sulfur sources from the underlying Qiongzhusi Fm.,which is approximately equal to the δ34S value of solid bitumen modified without thermochemical sulfate reduction[TSR],and the fractionation degree is about 2.4‰ to 2.9‰,indicating the mineralization temperature is in the range of 98.2 to 135.0 ℃. The chalcopyrite precipitation mainly utilizes the sulphur source in the formation water,which is approximately equal to the δ34S value of carbonate association sulfate[CAS]),and the mineralization temperature calculation is insignificance;(3)the mineralization temperature of pyrite indicates that the fault activity and hydrothermal activity in studied formation occurred at the peak phase of oil production and it continued in the later burial process,resulting in the ankerite precipitation with high uniform temperature.
LIU Dawei,CAI Chunfang,HU Yongjie et al. Hydrothermal activity temperature constrained by fractionation degree of sulfur isotope in symbiotic metal sulfide: a case study of the Lower Cambrian Longwangmiao Formation in central Sichuan Basin,China[J]. JOPC, 2023, 25(1): 215-225.
[1] 蔡春芳,赵龙. 2016. 热化学硫酸盐还原作用及其对油气与储集层的改造作用: 进展与问题. 矿物岩石地球化学通报, 35(5): 851-859. [Cai C F,Zhao L. 2016. Thermochemical sulfate reduction and its effects on petroleum composition and reservoir quality: advances and problems. Bulletin of Mineralogy,Petrology and Geochemistry, 35(5): 851-859] [2] 陈娅娜,张建勇,李文正,潘立银,佘敏. 2020. 四川盆地寒武系龙王庙组岩相古地理特征及储层成因与分布. 海相油气地质, 25(2): 171-178. [Chen Y N,Zhang J Y,Li W Z,Pan L Y,She M. 2020. Lithofacies paleogeography,reservoir origin and distribution of the Cambrian Longwangmiao Formation in Sichuan Basin. Marine Origin Petroleum Geology, 25(2): 171-178] [3] 黄文明,刘树根,张长俊,王国芝,徐国盛,雍自全,马文辛. 2009. 四川盆地寒武系储层特征及优质储层形成机理. 石油与天然气地质, 30(5): 566-575. [Huang W M,Liu S G,Zhang C J,Wang G Z,Xu G S,Yong Z Q,Ma W X. 2009. Reservoir characteristics and formation mechanism of the high quality Cambrian reservoirs in Sichuan Basin. Oil & Gas Geology, 30(5): 566-575] [4] 刘大卫,蔡春芳,扈永杰,姜磊,彭燕燕,于瑞,覃勤. 2020. 深层白云岩多期白云石化及其对孔隙演化的影响: 以川中地区下寒武统龙王庙组为例. 中国矿业大学学报, 49(6): 1250-1265. [Liu D W,Cai C F,Hu Y J,Jiang L,Peng Y Y,Yu R,Qin Q. 2020. Multistage dolomitization process of deep burial dolostones and its influence on pore evolution: a case study of Longwangmiao Formation in the Lower Cambrian of central Sichuan Basin. Journal of China University of Mining & Technology, 49(6): 1250-1265] [5] 马腾,谭秀成,李凌,曾伟,金民东,罗冰,洪海涛,杨雨. 2015. 四川盆地及邻区下寒武统龙王庙组颗粒滩沉积特征与空间分布. 古地理学报, 17(2): 213-228. [Ma T,Tan X C,Li L,Zeng W,Jin M D,Luo B,Hong H T,Yang Y. 2015. Sedimentary characteristics and distribution of grain shoals in the Lower Cambrian Longwangmiao Formation of Sichuan Basin and its adjacent areas. Journal of Palaeogeography(Chinese Edition), 17(2): 213-228] [6] 沈安江,陈娅娜,潘立银,王龙,佘敏. 2016. 四川盆地下寒武统龙王庙组沉积相与储层分布预测研究. 天然气地球科学, 28(8): 1176-1190. [Shen A J,Chen Y N,Pan L Y,Wang L,She M. 2016. The facies and porosity origin of reservoirs: case studies from Longwangmiao Formation of Cambrian,Sichuan Basin,and their implication to reservoir prediction. Natural Gas Geoscience, 28(8): 1176-1190] [7] 许海龙,魏国齐,贾承造,杨威,周天伟,谢武仁,李传新,罗贝维. 2012. 乐山—龙女寺古隆起构造演化及对震旦系成藏的控制. 石油勘探与开发, 39(4): 406-416. [Xu H L,Wei G Q,Jia C Z,Yang W,Zhou T W,Xie W R,Li C X,Luo B W. 2012. Tectonics evolution of the Leshan-Longnvsi paleo-uplift and its control on gas accumulation in the Sinian strata,Sichuan Basin. Petroleum Exploration and Development, 39(4): 406-416] [8] 杨威,谢武仁,魏国齐,刘满仓,曾富英,谢增业,金惠. 2012. 四川盆地寒武纪—奥陶纪层序岩相古地理、有利储层展布与勘探区带. 石油学报, 33(S2): 21-34. [Yang W,Xie W R,Wei G Q,Liu M C,Zeng F Y,Xie Z Y,Jin H. 2012. Sequence lithofacies paleogeography,favorable reservoir distribution and exploration zones of the Cambrian and Ordovician in Sichuan Basin,China. Acta Petroleum Sinica, 33(S2): 21-34] [9] 杨雪飞,王兴志,杨跃明,李兴彦,姜楠,谢继荣,罗文军. 2015. 川中地区下寒武统龙王庙组白云岩储层成岩作用. 地质科技情报, 34(1): 35-41. [Yang X F,Wang X Z,Yang Y M,Li X Y,Jiang N,Xie J R,Luo W J. 2015. Diagenesis of dolomite reservoir in Lower Cambrian Longwangmiao Formation in central Sichuan Basin. Geological Science and Technology Information, 34(1): 35-41] [10] Bachinski D J. 1969. Bond strength and sulfur isotopic fractionation in coexisting sulfides. Economic Geology, 64(1): 56-65. [11] Bigeleisen J,Mayer M G. 1947. Calculation of equilibrium constants for isotopic exchange reactions. Journal of Chemical Physics, 15: 261-267. [12] Cai C,Li K,Zhu Y,Lei X,Cai L L. 2010. TSR origin of sulfur in Permian and Triassic reservoir bitumen,east Sichuan Basin,China. Organic Geochemistry, 41(9): 871-878. [13] Cai C,Xiang L,Yuan Y,Xu C,He W,Tang Y,Tenger B. 2017. Sulfur and carbon isotopic compositions of the Permian to Triassic TSR and non-TSR altered solid bitumen and its parent source rock in NE Sichuan Basin. Organic Geochemistry, 105: 1-12. [14] Canfield D E,Raiswell R,Bottrell S H. 1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292: 659-683. [15] Canfield D E. 2004. The evolution of the Earth surface sulfur reservoir. American Journal of Science, 304: 839-861. [16] Donald R,Southam G. 1999. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochimica et Cosmochimica Acta, 63(13): 2019-2023. [17] Jiang L,Fakhraee M,Cai C,Worden R H. 2020. Sulfur cycling during progressive burial in sulfate-rich marine carbonates. Geochemistry,Geophysics,Geosystems, 21: e2020GC009383. [18] Keith S M,Herbert R A,Harfoot C G. 1982. Isolation of new types of sulfate-reducing bacteria from estuarine and marine sediments using chemostat enrichments. Journal of Applied Microbiology, 53(1): 29-33. [19] Li Y,Liu J. 2006. Calculation of sulfur isotope fractionation in sulfides. Geochimica et Cosmochimica Acta, 70: 1789-1795. [20] Liu D,Cai C,Hu Y,Peng Y,Jiang L. 2021. Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in Central Sichuan Basin,China. Marine and Petroleum Geology, 123: 104752. [21] Ohmoto H,Rye R O. 1979. Isotopes of sulfur and carbon. In: Barnes H L(ed). Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons: 509-567. [22] Ohmoto H,Lasaga A C. 1982. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochimica et Cosmochimica Acta, 46: 1727-1745. [23] Ono S,Wing B,Johnston D,Farquhar J,Rumble D. 2006. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochimica et Cosmochimica Acta, 70: 2238-2252. [24] Seal R R,Alpers C N,Rye R O. 2000. Stable isotope systematics of sulfate minerals. Reviews in Mineralogy & Geochemistry, 40(1): 541-602. [25] Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy & Geochemistry, 61: 633-677. [26] Smith J W,Doolan S,McFarlan E F. 1977. A sulfur isotope geothermomter for the trisulfide system galena-sphalerite-pyrite. Chemical Geology, 19: 83-90. [27] Zhang J,Lin Y,Yan J,Li J,Yang W. 2017. Simultaneous determination of sulfur isotopes and trace elements in pyrite with a NanoSIMS 50L. Analytical Methods, 9: 6653-6661. [28] Zhang P,Liu G,Cai C,Li M,Chen R,Gao P,Xu C,Wan W,Zhang Y,Jiang M. 2019. Alteration of solid bitumen by hydrothermal heating and thermochemical sulfate reduction in the Ediacaran and Cambrian dolomite reservoirs in the Central Sichuan Basin,SW China. Precambrian Research, 321: 277-302.