Characteristics and genetic mechanism of weathering crust on carbonate rocks on the top of the Ordovician in southern margin of Ordos Basin
XIONG Jiabei1,2,3, HE Dengfa2,3, CHENG Xiang2,3, LUO Yufeng1
1 PetroChina Zhejiang Oilfield Company,Hangzhou 311100,China; 2 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083,China; 3 Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism(Ministry of Education), China University of Geosciences(Beijing),Beijing 100083,China
Abstract:During the Caledonian tectonic movement period,the Ordos Basin was uplifted as a whole in the Middle and Late Ordovician,and underwent deposition again in the Late Carboniferous. It has experienced nearly 150 million years of weathering and erosion,resulting in the development of an Ordovician carbonate weathering crust,which is highly important for natural gas accumulation. In this paper,a typical well was selected from the southern margin of the Ordos Basin. Based on the mineral composition,major and trace elements,and logging response characteristics,the vertical structure,degree of weathering and alteration,and paleoclimate environment of the weathering crust were analyzed,and the formation process and preservation mechanism were reconstructed. The results indicate that: (1)The weathered crust can be divided into a weathered residual layer,a strongly weathered layer,a weakly weathered layer,and a bedrock layer from top to bottom. The overall weathering degree is strong,and the logging response characteristics in each layer segment are very significant. (2)In this weathering crust profile,the main elements TiO2,Al2O3,and Fe2O3 are enriched,with slight depletion of SiO2 and strong depletion of Ca,Mg,and Na. (3)Based on paleolatitude data and relevant geochemical indicators,it is believed that the southern part of the Ordos Basin developed transitional sedimentary facies between sea and land during the late Paleozoic. The average annual temperature during the formation of weathered crust was 28.15 ℃,and it was in a humid-semi-arid environment,belonging to a tropical-subtropical climate. (4)The widespread development of cracks in each layer of the weathered crust indicates the existence of a karst fracture-cave system in the southern region of the Ordos Basin. Although the thickness of each structural layer of the weathered crust varies due to the influence of terrain elevation differences in the later stage,the probability of preserving the weathered crust structural layer is greater in areas with relatively flat terrain,suggesting that this location is favorable for later exploration of weathered crust gas reservoirs. These results can provide a reference for the exploration of oil and gas reservoirs in karst weathering crusts in the Majiagou Formation and aluminum-bearing rock series in the Benxi Formation in the Ordos Basin in the future.
XIONG Jiabei,HE Dengfa,CHENG Xiang et al. Characteristics and genetic mechanism of weathering crust on carbonate rocks on the top of the Ordovician in southern margin of Ordos Basin[J]. JOPC, 2024, 26(1): 100-118.
[1] 陈骏,季峻峰,仇纲,朱洪兵,鹿化煜. 1997. 陕西洛川黄土化学风化程度的地球化学研究. 中国科学(D辑: 地球科学), 27(6): 531-536. [Chen J,Ji J F,Qiu G,Zhu H B,Lu H Y.1997. Geochemical study on chemical weathering degree of loess in Luochuan,Shaanxi Province. Science in China(Series D), 27(6): 531-536] [2] 陈骏,汪永进,陈旸,刘连文,季峻峰,鹿化煜. 2001. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义. 地质学报, 75(2): 259-266. [Chen J,Wang Y J,Chen Y,Liu L W,Ji J F,Lu H Y.2001. Rb and Sr geochemical characterization of the Chinese loess and its implications for palaeomonsoon climate. Acta Geologica Sinica, 75(2): 259-266] [3] 陈平,柴东浩. 1997. 山西地块石炭纪铝土矿沉积地球化学研究. 太原: 山西科学技术出版社. [Chen P,Chai D H.1997. Geochemical Study of Carboniferous Bauxite Deposits in Shanxi Block. Taiyuan: Shanxi Science and Technology Press] [4] 陈松,傅雪海,桂和荣,孙林华. 2012. 皖北新元古界望山组灰岩微量元素地球化学特征. 古地理学报, 14(6): 813-820. [Chen S,Fu X H,Gui H R,Sun L H.2012. Geochemical characteristics of trace elements in limestone of the Neoproterozoic Wangshan Formation in northern Anhui Province. Journal of Palaeogeography(Chinese Edition), 14(6): 813-820] [5] 陈涛,王欢,张祖青,王河锦. 2003. 粘土矿物对古气候指示作用浅析. 岩石矿物学杂志, 22(4): 416-420. [Chen T,Wang H,Zhang Z Q,Wang H J.2003. Clay minerals as indicators of paleoclimate. Acta Petrologica et Mineralogica, 22(4): 416-420] [6] 程保洲. 1992. 山西晚古生代沉积环境与聚煤规律. 太原: 山西科学技术出版社. [Cheng B Z.1992. Late Paleozoic Sedimentary Environment and Coal Accumulation Laws in Shanxi Province. Taiyuan: Shanxi Science and Technology Press] [7] 杜远生,余文超. 2020. 沉积型铝土矿的陆表淋滤成矿作用: 兼论铝土矿床的成因分类. 古地理学报, 22(5): 812-826. [Du Y S,Yu W C.2020. Subaerial leaching process of sedimentary bauxite and the discussion on classifications of bauxite deposits. Journal of Palaeogeography(Chinese Edition), 22(5): 812-826] [8] 冯增昭,鲍志东. 1999. 鄂尔多斯奥陶纪马家沟期岩相古地理. 沉积学报, 17(1): 1-8. [Feng Z Z,Bao Z D.1999. Lithofacies paleogeography of Majiagou Age of Ordovician in Ordos Basin. Acta Sedimentologica Sinica, 17(1): 1-8] [9] 冯志刚,马强,王世杰,李石朋,梁连东. 2013. 碳酸盐岩风化剖面U和Th的富集特征及淋溶实验的指示. 地质通报, 32(4): 639-651. [Feng Z G,Ma Q,Wang S J,Li S P,Liang L D.2013. The enrichment characteristics of uranium and thorium in weathering profiles of carbonate rocks and the implications of their leaching experiments. Geological Bulletin of China, 32(4): 639-651] [10] 高杰. 2016. 玄武岩纤维在酸碱及相对湿度环境下的老化性研究. 东华大学硕士学位论文. [Gao J.2016. Research on basalt fiber aged in acid,alkali and relative humidity environment. Masteral dissertation of Donghua University] [11] 顾尚义,毛健全,张启厚. 2002. 广西凭祥地区金矿床地质地球化学特征研究. 地质地球化学, 30(2): 15-18. [Gu S Y,Mao J Q,Zhang Q H.2002. Geological and geochemical characteristics of gold deposits in Pingxiang area,Guangxi. Geology-geochemistry, 30(2): 15-18] [12] 郭熙年,唐仲林,李万程. 1991. 河南省晚古生代聚煤规律, 武汉: 中国地质大学出版社. [Guo X N,Tang Z L,Li W C.1991. Coal Accumulation Law of Late Paleozoic in Henan Province. Wuhan: China University of Geosciences Press] [13] 韩敏强. 2010. 鄂尔多斯盆地延长探区奥陶纪末古地貌与马五段储层预测. 西北大学硕士学位论文: 22-35. [Han M Q.2010. The palaeogeomorphic recovery of late Ordovician and the section of Olm5 reservoir prediction in Yanchang exploration area of Ordos Basin. Masteral dissertation of Northwest University: 22-35] [14] 侯中帅,陈世悦,王越,李天宝,赫庆庆,崔绮梦. 2018. 鄂尔多斯盆地东缘保德地区上古生界层序地层与沉积相特征. 古地理学报, 20(2): 231-243. [Hou Z S,Chen S Y,Wang Y,Li T B,He Q Q,Cui Q M.2018. Characteristics of sequence stratigraphy and sedimentary facies of the Upper Paleozoic in Baode area,eastern margin of Ordos Basin. Journal of Palaeogeography(Chinese Edition), 20(2): 231-243] [15] 黄宝春,朱鸿,谭承泽. 1994. 吉林省东部地区古地磁结果的大地构造意义. 地球物理学报,37(S2): 304-315. [Huang B C,Zhu H,Tan C Z.1994. Tectonic implications of paleomagnetic data from eastern area of Jilin Province,China. Chinese Journal of Geophysics,37(S2): 304-315] [16] 黄宝春,朱日祥. 1996. 华北地块早古生代古地磁结果的大地构造意义. 地球物理学报,39(S1): 166-172. [Huang B C,Zhu R X.1996. Tectonic implications of Early Paleozoic paleomagnetic results in the North China Block. Chinese Journal of Geophysics,39(S1): 166-172] [17] 黄宝春,朱日祥,Otofuji Y,杨振宇. 2000. 华北等中国主要地块早古生代早期古地理位置探讨. 科学通报, 45(4): 337-345. [Huang B C,Zhu R X,Otofuji Y,Yang Z Y.2000. Discussion on the Early Paleozoic Paleogeographic Location of Major Land Blocks in China,including North China. Chinese Science Bulletin, 45(4): 337-345] [18] 金书晨,李永化,魏东岚,李新瑞,刘大齐. 2020. 辽东半岛夷平面发育特征初步探究. 古地理学报, 22(4): 715-726. [Jin S C,Li Y H,Wei D L,Li X R,Liu D Q.2020. Preliminary study on development characteristics of planation surface in Liaodong Peninsula. Journal of Palaeogeography(Chinese Edition), 22(4): 715-726] [19] 蓝先洪. 1990. 粘土矿物作为古气候指标矿物的探讨. 地质科技情报, 9(4): 31-35. [Lan X H.1990. Clay minerals as an index of paleoclimate. Geological Science and Technology Information, 9(4): 31-35] [20] 李汉瑜,张锦泉. 1991. 古岩溶与油气储层. 成都: 成都科技大学出版社. [Li H Y,Zhang J Q.1991. Paleokarst and Oil and Gas Reservoir. Chengdu: Chengdu University of Science and Technology Press] [21] 李朋武,张世红,高锐,李海燕,赵庆乐,李秋生,管烨. 2012. 内蒙古中部晚石炭世—早二叠世古地磁新数据及其地质意义. 吉林大学学报(地球科学版),42(S1): 423-434,440. [Li P W,Zhang S H,Gao R,Li H Y,Zhao Q L,Li Q S,Guan Y.2012. New Upper Carboniferous-Lower Permian paleomagnetic results from the central Inner Mongolia and their geological implications. Journal of Jilin University(Earth Science Edition),42(S1): 423-434,440] [22] 李永安,李佩贤,孙东江,程政武. 2004. 甘肃玉门地区二叠系—三叠系古地磁研究. 地质论评, 50(4): 407-412. [Li Y A,Li P X,Sun D J,Cheng Z W.2004. Paleomagnetic study of the Permian-Triassic in the Yumen area,Gansu. Geological Review, 50(4): 407-412] [23] 林万智,邵济安,赵章元. 1984. 中朝板块晚古生代的古地磁特征. 物探与化探, 8(5): 297-304. [Lin W Z,Shao J A,Zhao Z Y.1984. Paleomagnetic features of sino-korea plate in late Paleozoic era. Geophysical and Geochemical Exploration, 8(5): 297-304] [24] 刘长龄. 1986. 变高岭石在自然界的发现. 地质找矿论丛, 1(2): 70-76. [Liu C L.1986. The finding of natural metakaolinite. Contributions to Geology and Mineral Resources Research, 1(2): 70-76] [25] 卢静文,彭晓蕾,徐丽杰. 1997. 山西铝土矿床成矿物质来源. 长春地质学院学报, 27(2): 147-152. [Lu J W,Peng X L,Xu L J.1997. Source of mineral forming materials in Shanxi bauxite deposits. Journal of Changchun University of Earth Sciences, 27(2): 147-152] [26] 马晓晨,王家生,陈粲,王舟. 2018. 华北房山景儿峪组顶部古风化壳常量元素地球化学特征及其古气候意义. 地球科学, 43(11): 3853-3872. [Ma X C,Wang J S,Chen C,Wang Z.2018. Major element compositions and paleoclimatic implications of paleo-regolith on top Jingeryu Formation in Fangshan,North China. Earth Science, 43(11): 3853-3872] [27] 马醒华. 1984. 四川峨眉、山西太原地区二叠纪的古地磁特征及其地质意义. 中国地质科学院. [Ma X H.1984. Paleomagnetic characteristics and geological significance of the Permian in the Emei area of Sichuan and Taiyuan area of Shanxi. Chinese Academy of Geological Sciences] [28] 马醒华,邢历生,徐树金,张景鑫,杨振宇. 1992. 鄂尔多斯盆地二叠—三叠系磁性地层特征的初步研究. 科学通报, 37(3): 252-255. [Ma X H,Xing L S,Xu S J,Zhang J X,Yang Z Y.1992. Preliminary study on the characteristics of the Permian-Triassic magnetic strata in Ordos Basin. Chinese Science Bulletin, 37(3): 252-255] [29] 孟自芳. 1992. 河西走廊晚二叠世红层的古地磁结果. 科学通报, 37(7): 637-640. [Meng Z F.1992. Paleomagnetic results of Late Permian red beds in Hexi Corridor. Chinese Science Bulletin, 37(7): 637-640] [30] 牛东风,李保生,王丰年,陈琼,舒培仙,温小浩,陈敏. 2015. 微量元素记录的毛乌素沙漠全新世气候波动: 以萨拉乌苏流域DGS1层段为例. 沉积学报, 33(4): 735-743. [Niu D F,Li B S,Wang F N,Chen Q,Shu P X,Wen X H,Chen M.2015. Holocene climate fluctuations from the record of trace elements in the Mu Us Desert: evidence from the DGS1 segment of the Salawusu River Valley. Acta Sedimentologica Sinica, 33(4): 735-743] [31] 冉樱. 2011. 苏里格气田东部奥陶系马五段天然气成藏规律研究. 成都理工大学硕士学位论文. [Ran Y.2011. Research on the rules of hydrocarbon accumulation of Majiagou 5th Members of Ordovician in the eastern of Sulige Gas Field. Masteral dissertation of Chengdu University of Technology] [32] 任美锷,刘振中,王飞燕. 1983. 岩溶学概论. 北京: 商务印书馆. [Ren M E,Liu Z Z,Wang F Y.1983. Introduction to Karstology. Beijing: The Commercial Press] [33] 任收麦,朱日祥,黄宝春,张福勤,王红强. 2002. 造山带内古地磁研究: 以苏宏图早白垩世火山岩为例. 中国科学(D辑), 32(10): 799-804. [Ren S M,Zhu R X,Huang B C,Zhang F Q,Wang H Q.2002. A study on paleomagnetism within the orogenic belt: taking the Early Cretaceous volcanic rocks of Suhongtu as an example. Science in China(Series D),32(10)): 799-804] [34] 孙承兴,王世杰,刘秀明,冯志刚. 2002. 碳酸盐岩风化壳岩—土界面地球化学特征及其形成过程: 以贵州花溪灰岩风化壳剖面为例. 矿物学报, 22(2): 126-132. [Sun C X,Wang S J,Liu X M,Feng Z G.2002. Geochemical characteristics and formation mechanism of rock-soil interface in limestone weathering crust at Huaxi,Guizhou Province. Acta Mineralogica Sinica, 22(2): 126-132] [35] 孙庆峰,陈发虎,Christophe Colin,张家武. 2011. 粘土矿物在气候环境变化研究中的应用进展. 矿物学报, 31(1): 146-152. [Sun Q F,Chen F H,Colin C,Zhang J W.2011. Application progress of clay minerals in the researches of climate and environment. Acta Mineralogica Sinica, 31(1): 146-152] [36] 汤艳杰,贾建业,谢先德. 2002. 粘土矿物的环境意义. 地学前缘, 9(2): 337-344. [Tang Y J,Jia J Y,Xie X D.2002. Environment significance of clay minerals. Earth Science Frontiers, 9(2): 337-344] [37] 汪曾荫,刘汉男,唐锦秀,尚冠雄. 1996. 华北地台晚古生代含煤地层多重划分. 华北地质矿产, 11(1): 9-23. [Wang Z Y,Liu H N,Tang J X,Shang G X.1996. The multiple classification of Late Palaeozoic stratigraphy of North China Platform. Journal of Geology & Mineral Research in North China, 11(1): 9-23] [38] 王世杰,季宏兵,欧阳自远,周德全,郑乐平,黎廷宇. 1999. 碳酸盐岩风化成土作用的初步研究. 中国科学: D 辑, 29(5): 441-449. [Wang S J,Ji H B,Ouyang Z Y,Zhou D Q,Zheng L P,Li T Y.1999. Preliminary study on weathering and pedogensis of carbonate rocks. Science in China(Series D), 29(5): 441-449] [39] 王随继,黄杏珍,妥进才,邵宏舜,阎存凤,王寿庆,何祖荣. 1997. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义. 沉积学报, 15(1): 65-70. [Wang S J,Huang X Z,Tuo J C,Shao H S,Yan C F,Wang S Q,He Z R.1997. Evolutional characteristics and their paleoclimate significance of trace elements in the hetaoyuan formation,Biyang depression. Acta Sedimentologica Sinica, 15(1): 65-70] [40] 魏柳斌,陈洪德,郭玮,严婷,蔡郑红,周黎霞. 2021. 鄂尔多斯盆地乌审旗—靖边古隆起对奥陶系盐下沉积与储层的控制作用. 石油与天然气地质, 42(2): 391-400,521. [Wei L B,Chen H D,Guo W,Yan T,Cai Z H,Zhou L X.2021. Wushen-Jingbian paleo-uplift and its control on the Ordovician subsalt deposition and reservoirs in Ordos Basin. Oil & Gas Geology, 42(2): 391-400,521] [41] 吴汉宁,朱日祥,刘椿,常承法. 1990. 华北地块晚古生代至三叠纪古地磁研究新结果及其构造意义. 地球物理学报, 33(6): 694-701. [Wu H N,Zhu R X,Liu C,Chang C F.1990. Paleomagnetic observations in North China block: from Late Paleozoic to Triassic. Chinese Journal of Geophysics, 33(6): 694-701] [42] 吴汉宁,周立发,赵重远. 1993. 阿拉善及邻区石炭二叠系古地磁学研究及意义. 中国科学(B辑), 23(5): 527-536. [Wu H N,Zhou L F,Zhao Z Y.1993. Paleomagnetic study of the carboniferous Permian in Alxa and its neighboring areas and its significance. Science in China(Serics B), 23(5): 527-536] [43] 熊加贝. 2022. 鄂尔多斯盆地奥陶系顶部风化壳结构及其成因机制. 中国地质大学(北京)硕士学位论文. [Xiong J B.2022. Structure and genetic mechanism of top weathered crust in Ordos Basin during the Ordovician period. Masteral dissertation of China University of Geosciences(Beijing)] [44] 熊平生. 2015. 江西赣县花岗岩型红土剖面常量元素地球化学特征. 高校地质学报, 21(3): 553-558. [Xiong P S.2015. Major elements geochemical characteristics of the granite-type laterite profile in Gan Xian,Jiangxi Province. Geological Journal of China Universities, 21(3): 553-558] [45] 熊志方,龚一鸣. 2006. 北戴河红色风化壳地球化学特征及气候环境意义. 地学前缘, 13(6): 177-186. [Xiong Z F,Gong Y M.2006. Geochemical characteristics and climatic-environmental significance of the red weathering crusts in the Beidaihe coast,North China. Earth Science Frontiers, 13(6): 177-186] [46] 杨振宇,马醒华,孙知明,黄宝春,周烑秀,董金明,朱鸿. 1997. 豫北地区早古生代古地磁研究的初步结果及其意义. 科学通报, 42(4): 401-406. [Yang Z Y,Ma X H,Sun Z M,Huang B C,Zhou Y X,Dong J M,Zhu H.1997. Preliminary results and significance of Early Paleozoic paleomagnetic research in the northern Henan Region. Chinese Science Bulletin, 42(4): 401-406] [47] 杨振宇,马醒华,孙知明,黄宝春,周烑秀. 1998. 华北地块显生宙古地磁视极移曲线与地块运动. 中国科学(D辑),28(S1): 44-56. [Yang Z Y,Ma X H,Sun Z M,Huang B C,Zhou Y X.1998. Phanerozoic paleomagnetic apparent polar shift curve and block movement of the North China Block. Science in China(Series D),28(S1): 44-56] [48] 杨振宇,Y Otofuji,黄宝春,孙知明. 1999. 华北陆块冈瓦纳大陆亲缘性的古地磁证据. 地质论评, 45(4): 402-407. [Yang Z Y,Otofuji Y,Huang B C,Sun Z M.1999. Paleomagnetic evidence of the affinity of the North China block with Gondwana. Geological Review, 45(4): 402-407] [49] 袁路朋,周洪瑞,景秀春,王振涛,传婷婷,房强. 2014. 鄂尔多斯盆地南缘奥陶系碳酸盐微相及其沉积环境分析. 地质学报, 88(3): 421-432. [Yuan L P,Zhou H R,Jing X C,Wang Z T,Chuan T T,Fang Q.2014. Microfacies and facies analysis of the Ordovician carbonates in the south margin of the Ordos Basin. Acta Geologica Sinica, 88(3): 421-432] [50] 赵运发,柴东浩. 2002. 山西铝土矿成矿因素探讨. 有色矿山, 31(6): 1-5. [Zhao Y F,Chai D H.2002. Discussion on ore-forming factors of Shanxi bauxite. Nonferrous Mines, 31(6): 1-5] [51] 周文娟,杨小强,周永章,朱东伟,张澄博,高芳蕾. 2007. 广东小良水土保持观察站花岗岩风化壳磁化率特征及其与生态环境演替的关系. 古地理学报, 9(1): 77-86. [Zhou W J,Yang X Q,Zhou Y Z,Zhu D W,Zhang C B,Gao F L.2007. Characteristics of magnetic susceptibility of granite weathering crust and their relationship with succession of ecologic environments in Xiaoliang Soil and Water Conservation Station,Guangdong Province. Journal of Palaeogeography(Chinese Edition), 9(1): 77-86] [52] Ashley G M,Driese S G.2000. Paleopedology and paleohydrology of a volcaniclastic paleosol interval: implications for Early Pleistocene stratigraphy and paleoclimate record,Olduvai Gorge,Tanzania. Journal of Sedimentary Research, 70(5): 1065-1080. [53] Brimhall G H,Dietrich W E.1987. Constitutive mass balance relations between chemical composition,volume,density,porosity,and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51(3): 567-587. [54] Chadwick O A,Brimhall G H,Hendricks D M.1990. From a black to a gray box: a mass balance interpretation of pedogenesis. Geomorphology, 3(3): 369-390. [55] Dasch E J.1969. Strontium isotopes in weathering profiles,deep-sea sediments,and sedimentary rocks. Geochimica et Cosmochimica Acta, 33(12): 1521-1552. [56] Dickson B L,Scott K M.1998. Recognition of aeolian soils of the Blayney district,NSW: implications for mineral exploration. Journal of Geochemical Exploration, 63(3): 237-251. [57] Driese S G,Jacobs J R,Nordt L C.2003. Comparison of modern and ancient Vertisols developed on limestone in terms of their geochemistry and parent material. Sedimentary Geology,157(1/2): 49-69. [58] Halbach P,Puteanus D,Giovanoli R.1988. The manganese nodule belt of the Pacific Ocean: geological environment,nodule formation and mining aspects. Marine Geology, 96(3): 354-355. [59] Hofer G,Draganits E,Wagreich M,Hofmann C,R eischenbacher D,Grundtner M,Bottig M.2011. Stratigraphy and geochemical characterization of Upper Cretaceous non-marine-marine cycles(Grünbach Formation,Gosau Group,Austria). Austrian Journal of Earth Sciences, 104(2): 90-107. [60] Jones B,Manning D A C.1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111-129. [61] Nesbitt H W.1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279: 206-210. [62] Rye R,Holland H D.1998. Paleosols and the evolution of atmospheric oxygen: a critical review. American Journal of Science, 298(8): 621-672. [63] Sheldon N D,Tabor N J.2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95(1): 1-52. [64] Schwarz T.1997. Lateritic bauxite in central Germany and implications for Miocene palaeoclimate. Palaeogeography,Palaeoclimatology,Palaeoecology,129(1/2): 37-50. [65] Büdel J K.1958. Die doppelten Einebnungsflächen in den feuchten Tropen,gezeigt an Beispielen aus dem Sudan und Äthiopien. Zeitschrift der Deutschen Geologischen Gesellschaft, 110: 592-636.