SUO Yanhui1,2, FU Xijian1, LI Sanzhong1,2, CHENG Haohao1, TIAN Zihan1, HAN Xu1, SONG Shuangshuang1
1 Frontiers Science Center for Deep Ocean Multispheres and Earth System,Key Lab of Submarine Geosciences and Prospecting Techniques,MOE and College of Marine Geosciences,Ocean University of China,Shandong Qingdao 266100,China; 2 Laboratory for Marine Mineral Resources,Laoshan Laboratory,Shandong Qingdao 266237,China
Abstract:As a key interface connecting the deep-time Earth's internal and external systems,paleo-landscape reconstruction provides an important way for studying deep Earth sciences. The development of computer simulation tools makes it possible to reconstruct deep-time dynamic paleo-landscape. Badlands(Basin and Landscape Dynamics)and goSPL(Global Scalable Paleo Landscape Evolution)software are designed to understand the evolution of surface Earth system and its interaction with the solid Earth system,by combining factors of different spheres such as deep tectonic process,precipitation and sea level change. Based on these new technical basis,some achievements have been made,e.g. regional models that reproduce the topographic inversion and drainage reorganization processes in East Asia and global models that couple the landscape dynamics with the Phanerozoic diversification of the biosphere. However,some differences among different paleo-landscape reconstruction models arise due to uncertainty in elevation proxy indicators. In addition,it is difficult to make the simulated results to be completely consistent with the high-precision geological observation records. It is urgent to carry out global paleo-landscape models of ultra-high resolution in time and space.
[1] 韩续,索艳慧,李三忠,丁雪松,宋双双,田子晗,付新建. 2024. 新近纪以来华北东部古地貌演化过程及陆架海沉降控制. 古地理学报,26(1): 192-207. [Han X,Suo Y H,Li S Z,Ding X S,Song S S,Tian Z H,Fu X J.2024. Numerical simulation of eastern North China paleo-landscape evolution since the Neogene controlled by continental shelf subsidence. Journal of Palaeogeography(Chinese Edition),26(1): 192-207] [2] 李三忠,索艳慧,周洁,王光增,李玺瑶,姜兆霞,刘金平,刘丽军,刘永江,占华旺,姜素华,程昊皞,王鹏程,朱俊江,戴黎明,董昊,刘琳,郭晓玉. 2022. 华南洋陆过渡带构造演化: 特提斯构造域向太平洋构造域的转换过程与机制. 地质力学学报, 28(5): 683-704. [Li S Z,Suo Y H,Zhou J,Wang G Z,Li X Y,Jiang Z X,Liu J P,Liu L J,Liu Y J,Zhan H W,Jiang S H,Cheng H H,Wang P C,Zhu J J,Dai L M,Dong H,Liu L,Guo X Y.2022. Tectonic evolution of the South China Ocean-Continent Connection Zone: transition and mechanism of the Tethyan to the Pacific tectonic domains. Journal of Geomechanics, 28(5): 683-704] [3] 刘泽,李三忠,S.Wajid. Hanif. Bukhari,戴黎明,索艳慧. 2020. 动态古地貌再造: Badlands软件在盆地分析中的应用. 古地理学报, 22(1): 29-38. [Liu Z,Li S Z,Bukhari S W H,Dai L M,Suo Y H.2020. Reconstruction of dynamic palaeogeomorphy: application of Badlands software in basin analysis. Journal of Palaeogeography(Chinese Edition), 22(1): 29-38] [4] 宋双双,索艳慧,李三忠,丁雪松,韩续,田子晗,付新建. 2024. 华北早白垩世古地貌动态演变及热河生物群东迁. 古地理学报, 26(1): 172-191. [Song S S,Suo Y H,Li S Z,Ding X S,Han X,Tian Z H,Fu X J.2024. Early Cretaceous dynamic evolution of paleo-landscape and eastward migration of Jehol Biota in North China. Journal of Palaeogeography(Chinese Edition),26(1): 172-191] [5] 田子晗,索艳慧,李三忠,丁雪松,韩续,宋双双,付新建. 2024. 长江三峡贯通过程的动态古地貌重建. 古地理学报,26(1): 208-229. [Tian Z H,Suo Y H,Li S Z,Ding X S,Han X,Song S S,Fu X J.2024. Dynamic paleo-landscape reconstruction revealing the incision process of Three Gorges of Yangtze River. Journal od Palaeogeography(Chinese Edition),26(1): 208-229] [6] 杨振,张光学,张莉,夏斌. 2016. 西沙海域中中新世早期古地貌及其控制因素. 海洋地质与第四纪地质, 36(3): 47-57. [Yang Z,Zhang G X,Zhang L,Xia B.2016. Paleogeomorphology of early Middle Miocene in the Xisha Sea area and its control factors. Marine Geology & Quaternary Geology, 36(3): 47-57] [7] 朱阿兴,朱良君,史亚星,秦承志,刘军志. 2019. 流域系统综合模拟与情景分析: 自然地理综合研究的新范式?地理科学进展, 38(8): 1111-1122. [Zhu A X,Zhu L J,Shi Y X,Qin C Z,Liu J Z.2019. Integrated watershed modeling and scenario analysis: a new paradigm for integrated study of physical geography?Progress in Geography, 38(8): 1111-1122] [8] Bahadori A,Holt W E,Feng R,Austermann J,Loughney K M,Salles T,Moresi L,Beucher R,Lu N,Flesch L M,Calvelage C M,Rasbury E T,Davis D M,Potochnik A R,Ward W B,Hatton K,Haq S S B,Smiley T M,Wooton K M,Badgley C.2022. Coupled influence of tectonics,climate,and surface processes on landscape evolution in southwestern North America. Nature Communications, 13(1): 4437. [9] Bukhari S W H,Li S,Liu Z,Suo Y,Zhou J,Dai L,Wang P,Somerville I.2022. Deep and surface driving forces that shape the Earth: insights from the evolution of the northern South China sea margin. Gondwana Research,S1342937X22001393. https://doi.org/10.1016/j.gr.2022.05.005. [10] Cheng H,Suo Y,Ding X,Li S,Liu Z,Bukhari S W H,Wang G,Wang P,Wang L,Dong H,Cao X,Han X,Tian Z.2024. Neogene morphotectonic evolution of the East Asian Continental Shelf. Geomorphology,445: 108975. [11] Huntington K W,Klepeis K A.2018. Challenges and opportunities for research in tectonics: understanding deformation and the processes that link Earth systems,from geologic time to human time. A community vision document submitted to the U.S. National Science Foundation. https://digital.lib.washington.edu:443/researchworks/handle/1773/40754. [12] Liu Z,Dai L,Li S,Li Z H,Ding X,Bukhari S W H,Somerville I.2020. Earth's surface responses during geodynamic evolution: numerical insight from the southern East China Sea Continental Shelf Basin,West Pacific. Gondwana Research,S1342937X2030321X. https://doi.org/10.1016/j.gr.2020.12.011. [13] Müller R D,Sdrolias M,Gaina C,Steinberger B.2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319(5868): 1357-1362. [14] Salles T.2019. eSCAPE: regional to Global Scale Landscape Evolution Model v2.0. Geoscientific Model Development,12(9): 4165-4184. [15] Salles T,Hardiman L.2016. Badlands: an open-source,flexible and parallel framework to study landscape dynamics. Computers Geosciences, 91: 77-89. [16] Salles T,Flament N,Müller D.2017. Influence of mantle flow on the drainage of eastern Australia since the Jurassic Period. Geochemistry,Geophysics,Geosystems, 18(1): 280-305. [17] Salles T,Ding X,Brocard G.2018. PyBadlands: a framework to simulate sediment transport,landscape dynamics and basin stratigraphic evolution through space and time. PLOS ONE, 13(4): e0195557. [18] Salles T,Mallard C,Zahirovic S.2020. Gospl: Global Scalable Paleo Landscape Evolution. Journal of Open Source Software,5(56): 2804. [19] Salles T,Husson L,Lorcery M,Hadler Boggiani B.2023a. Landscape dynamics and the Phanerozoic diversification of the biosphere. Nature. https://doi.org/10.1038/s41586-023-06777-z. [20] Salles T,Husson L,Rey P,Mallard C,Zahirovic S,Boggiani B H,Coltice N,Arnould M.2023b. Hundred million years of landscape dynamics from catchment to global scale. Science, 379(6635): 918-923. [21] Scotese C R,Wright N. 2018. PALEOMAP Paleodigital Elevation Models(PaleoDEMS)for the Phanerozoic PALEOMAP Project. 2018. PALEOMAP Paleodigital Elevation Models(PaleoDEMS)for the Phanerozoic PALEOMAP Project. http://www.earthbyte.org/paleodem-resourcescotese-and-wright-2018/. [22] Valdes P J,Armstrong E,Badger M P S,Bradshaw C D,Bragg F,Crucifix M,Davies-Barnard T,Day J J,Farnsworth A,Gordon C,Hopcroft P O,Kennedy A T,Lord N S,Lunt D J,Marzocchi A,Parry L M,Pope V,Roberts W H G,Stone E J,Williams J H T.2017. The BRIDGE HadCM3 family of climate models: HadCM3 Bristol Geoscientific Model Development, 10(10): 3715-3743. [23] Wang P,Li S. Suo Y,Guo L,Santosh M,Li X,Wang G,Jiang Z,Liu B,Zhou J,Jiang S,Cao X,Liu Z.2021. Structural and kinematic analysis of Cenozoic rift basins in South China Sea: a synthesis. Earth-Science Reviews, 216: 103522.