Paleogene sediment source evolution and palaeogeographic significance in deep-water area of the northern South China Sea
XIANG Xuhong1,2, ZHANG Lili1,2, LU Yi3, QIAO Peijun3, CHEN Shuhui1, WU Mengshuang1, MA Qiong3, SHAO Lei3
1 Shenzhen Branch of CNOOC Ltd.,Guangdong Shenzhen 518054,China; 2 CNOOC Deepwater Development Ltd.,Guangdong Shenzhen 518054,China; 3 State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092, China
Abstract:The deep-water area of the northern South China Sea experienced a transition from lacustrine to marine environments in the Paleogene,and has rich oil and gas resources and broad exploration prospects. Due to the limitation of water depth,the provenance of sediments and the palaeogeographic evolution of the basin are not clear. In this paper,the Paleogene of the Zhu-2 depression in the Pearl River Mouth Basin is systematically studied by means of detrital zircon U-Pb ages and source-sink correlation. The results show that in the Early and Middle Eocene,the sediments of the Zhu-2 depression were mainly from local uplift area around the depression. In the Late Eocene,the Kunyingqiong River originated from the western side of the depression provided a large amount of sediments for the basin,whereas the Paleo-Pearl River sediments had little influence on the deposition in the depression. In the Oligocene,the Paleo-Pearl River crossed the Panyu low uplift and entered the Baiyun sag,carrying sediments mixed with the Kunyingqiong River sediments in the form of delta deposition in the north and mid-west of the sag,forming a dual provenance river-delta system. The Paleogene provenance evolution of the deep-water area of the northern South China Sea was obviously controlled by regional tectonic palaeogeography of the Mesozoic. Identifying the provenance evolution during this period is of great significance for restoring the regional palaeogeography pattern.
XIANG Xuhong,ZHANG Lili,LU Yi et al. Paleogene sediment source evolution and palaeogeographic significance in deep-water area of the northern South China Sea[J]. JOPC, 2024, 26(2): 296-307.
[1] 陈淑慧,彭光荣,张丽,柳保军,颜晖,张博. 2022. 南海北部白云深水区高变地温梯度砂岩渗透率定量预测. 地球科学, 47(7): 2468-2480. [Chen S H,Peng G R,Zhang L,Liu B J,Yan H,Zhang B.2022. Quantitative prediction of permeability of high variable geothermal gradient sandstone in Baiyun deep water area of northern South China Sea. Earth Science, 47(7): 2468-2480] [2] 高阳东,向绪洪,张向涛. 2021. 南海北部新生代沉积演变及其油气地质意义. 天然气地球科学, 32(5): 645-656. [Gao Y D,Xiang X H,Zhang X T.2021. Cenozoic sedimentary evolution and its geological significance for hydrocarbon exploration in the northern South China Sea. Natural Gas Geoscience, 32(5): 645-656] [3] 侯元立,邵磊,乔培军,蔡国富,庞雄,张道军. 2020. 珠江口盆地白云凹陷始新世—中新世沉积物物源研究. 海洋地质与第四纪地质, 40(2): 19-28. [Hou Y L,Shao L,Qiao P J,Cai G F,Pang X,Zhang D J.2020. Provenance of the Eocene-Miocene sediments in the Baiyun sag,Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 40(2): 19-28] [4] 柳保军,庞雄,颜承志,刘军,连世勇,何敏,申俊. 2011. 珠江口盆地白云深水区渐新世—中新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242. [Liu B J,Pang X,Yan C Z,Liu J,Lian S Y,He M,Shen J.2011. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration. Acta Petrolei Sinica, 32(2): 234-242] [5] 罗静兰,何敏,庞雄,李弛,柳保军,雷川,马永坤,庞江. 2019. 珠江口盆地南部热演化事件与高地温梯度的成岩响应及其对油气勘探的启示. 石油学报,40(S1): 90-104. [Luo J L,He M,Pang X,Li C,Liu B J,Lei C,Ma Y K,Pang J.2019. Diagenetic response on thermal evolution events and high geothermal gradients in the southern Pear River Mouth Basin and its enlightenment to hydrocarbon exploration. Acta Petrolei Sinica,40(S1): 90-104] [6] 庞雄,陈长民,邵磊,王成善,朱明,何敏,申俊,连世勇,吴湘杰. 2007. 白云运动: 南海北部渐新统—中新统重大地质事件及其意义. 地质论评, 53(2): 145-151. [Pang X,Chen C M,Shao L,Wang C S,Zhu M,He M,Shen J,Lian S Y,Wu X J.2007. Baiyun Movement: a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications. Geological Review, 53(2): 145-151] [7] 庞雄,何敏,朱俊章,朱明,代一丁,李劲松,连世勇. 2009. 珠二坳陷湖相烃源岩形成条件分析. 中国海上油气, 21(2): 86-90,94. [Pang X,He M,Zhu J Z,Zhu M,Dai Y D,Li J S,Lian S Y.2009. A study on development conditions of lacustrine source rocks in Zhu Ⅱdepression,Pearl River Mouth Basin. China Offshore Oil and Gas, 21(2): 86-90,94] [8] 庞雄,郑金云,任建业,王福国,颜晖,孙辉,柳保军. 2022. 南海北部陆缘超伸展区白云凹陷断陷结构演化与岩浆作用. 地球科学, 47(7): 2303-2316. [Pang X,Zheng J Y,Ren J Y,Wang F G,Yan H,Sun H,Liu B J.2022. Structural evolution and magmatism of fault depression in Baiyun sag,northern margin of South China Sea. Earth Science, 47(7): 2303-2316] [9] 邵磊,崔宇驰,乔培军,朱伟林,钟锴,周俊燊. 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报, 21(2): 216-231. [Shao L,Cui Y C,Qiao P J,Zhu W L,Zhong K,Zhou J S.2019. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution. Journal of Palaeogeography(Chinese Edition), 21(2): 216-231] [10] 邵磊,鲁毅,乔培军,崔宇驰,任建业,曹立成,马琼. 2022. 弧陆碰撞背景下沉积物轴向与横向搬运转换. 古地理学报, 24(5): 894-907. [Shao L,Lu Y,Qiao P J,Cui Y C,Ren J Y,Cao L C,Ma Q.2022. Transformation of axial and lateral transport of sediments under the background of arc-land collision. Journal of Palaeogeography(Chinese Edition), 24(5): 894-907] [11] 吴哲,张丽丽,朱伟林,邵磊,杨学奇. 2022. 南海北部白垩纪—渐新世早期沉积环境演变及构造控制. 古地理学报, 24(1): 73-84. [Wu Z,Zhang L L,Zhu W L,Shao L,Yang X Q.2022. Sedimentary environment evolution and tectonic evolution of the Cretaceous to early Oligocene in northern South China Sea. Journal of Palaeogeography(Chinese Edition), 24(1): 73-84] [12] 向绪洪,邵磊,乔培军,赵梦. 2011. 珠江流域沉积物重矿物特征及其示踪意义. 海洋地质与第四纪地质, 31(6): 27-35. [Xiang X H,Shao L,Qiao P J,Zhao M.2011. Characteristics of heavy minerals in Pearl River sediments and their implications for provenance. Marine Geology & Quaternary Geology, 31(6): 27-35] [13] 张功成. 2010. 南海北部陆坡深水区构造演化及其特征. 石油学报, 31(4): 528-533,541. [Zhang G C.2010. Tectonic evolution of deepwater area of northern continental margin in South China Sea. Acta Petrolei Sinica, 31(4): 528-533,541] [14] 张功成,杨海长,陈莹,纪沫,王柯,杨东升,韩银学,孙钰皓. 2014. 白云凹陷: 珠江口盆地深水区一个巨大的富生气凹陷. 天然气工业, 34(11): 11-25. [Zhang G C,Yang H Z,Chen Y,Ji M,Wang K,Yang D S,Han Y X,Sun Y H.2014. The Baiyun Sag: a giant rich gas-generation sag in the deepwater area of the Pearl River Mouth Basin. Natural Gas Industry, 34(11): 11-25] [15] 张功成,屈红军,刘世翔,谢晓军,赵钊,沈怀磊. 2015. 边缘海构造旋回控制南海深水区油气成藏. 石油学报, 36(5): 533-545. [Zhang G C,Qu H J,Liu S X,Xie X J,Zhao Z,Shen H L.2015. Tectonic cycle of marginal sea controlled the hydrocarbon accumulation in deep-water areas of South China Sea. Acta Petrolei Sinica, 36(5): 533-545] [16] 张功成,李增学,王东东,邵磊,杨海长,宋广增,陈莹,贾庆军,刘海燕,郭佳,刘莹. 2020. 中国南海海域煤地质特征. 煤炭学报, 45(11): 3864-3878. [Zhang G C,Li Z X,Wang D D,Shao L,Yang H Z,Song G Z,Chen Y,Jia Q J,Liu H Y,Guo J,Liu Y.2020. Characteristics of coal geology in South China Sea. Journal of China Coal Society, 45(11): 3864-3878] [17] 张向涛,向绪洪,赵梦,崔宇驰,张浩. 2022. 珠江水系演化与东亚地形倒转的耦合关系. 地球科学, 47(7): 2410-2420. [Zhang X T,Xiang X H,Zhao M,Cui Y C,Zhang H.2022. Coupling relationship between Pearl River water system evolution and East Asian terrain inversion. Earth Science, 47(7): 2410-2420] [18] 赵梦,邵磊,梁建设,乔培军,向绪洪. 2013. 古红河沉积物稀土元素特征及其物源指示意义. 地球科学,38(S1): 61-69. [Zhao M,Shao L,Liang J S,Qiao P J,Xiang X H.2013. REE character of sediment from the paleo-red river and its implication of provenance. Earth Science,38(S1): 61-69] [19] 朱伟林. 2010. 南海北部深水区油气地质特征. 石油学报, 31(4): 521-527. [Zhu W L.2010. Petroleum geology in deepwater area of northern continental margin in South China Sea. Acta Petrolei Sinica, 31(4): 521-527] [20] 朱伟林,钟锴,李友川,徐强,房殿勇. 2012. 南海北部深水区油气成藏与勘探. 科学通报, 57(20): 1830-1841. [Zhu W L,Zhong K,Li Y C,Xu Q,Fang D Y.2012. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deep water basin. Chinese Science Bulletion,57(20): 1830-1841] [21] Andersen T.2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192: 59-79. [22] Cao L C,Shao L,Qiao P J,Chen S H,Wu M S.2017. Geochemical evolution of Oligocene-Middle Miocene sediments in the deep-water area of the Pearl River Mouth Basin,northern South China Sea. Marine and Petroleum Geology, 80: 358-368. [23] Cao L C,Shao L,Qiao P J,Zhao Z G,van Hinsbergen D J J.2018. Early Miocene birth of modern Pearl River recorded low-relief,high-elevation surface formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496: 120-131. [24] Cui Y C,Shao L,Qiao P J,Pei J X,Zhang D J,Tran H.2019. Upper Miocene-Pliocene provenance evolution of the Central Canyon in northwestern South China Sea. Marine Geophysical Research, 40: 223-235. [25] Cui Y C,Shao L,Li Z X,Zhu W L,Qiao P J,Zhang X T.2021. A Mesozoic Andean-type active continental margin along coastal South China: new geological records from the basement of the northern South China Sea. Gondwana Research, 99: 36-52. [26] Jian Z M,Jin H Y,Kaminski M A,Ferreira F,Li B H,Yu P S.2019. Discovery of the marine Eocene in the northern South China Sea. National Science Review, 6: 881-885. [27] Lei C,Clift P D,Ren J Y,Ogg J,Tong C X.2019. A rapid shift in the sediment routing system of Lower-Upper Oligocene strata in the Qiongdongnnan Basin(Xisha Trough),Northwest South China Sea. Marine and Petroleum Geology, 104: 249-258. [28] Li Z X,Li X H,Chung S L,Lo C H,Xu X S,Li W X.2012. Magmatic switch-on and switch-off along the South China continental margin since the Permian: transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics, 532-535: 271-290. [29] Ma M,Chen G J,Lyu C F,Zhang G C,Li C,Yan Y K,Ma Z Q.2019. The formation and evolution of the paleo-Pearl River and its influence on the source of the northern South China Sea. Marine and Petroleum Geology, 106: 171-189. [30] Meng X B,Shao L,Cui Y C,Zhu W L,Qiao P J,Sun Z,Hou Y L.2021. Sedimentary records from Hengchun accretionary prism turbidites on Taiwan Island: implication on late Neogene migration rate of the Luzon subduction system. Marine and Petroleum Geology, 124: 104820. [31] Shao L,Cui Y C,Stattegger K,Zhu W L,Qiao P J,Zhao Z G.2019. Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian Plate. GSA Bulletin, 131: 461-478. [32] Xu X S,O’Reilly S Y,Griffin W L,Wang X L,Pearson N J,He Z Y.2007. The crust of Cathaysia: age,assembly and reworking of two terranes. Precambrian Research, 158: 51-78. [33] Xu Y H,Sun Q Q,Cai G Q,Yin X J,Chen J.2014. The U-Pb ages and Hf isotopes of detrital zircons from Hainan Island,South China: implications for sediment provenance and the crustal evolution. Environmental Earth Sciences, 71: 1619-1628. [34] Zhang H,Cui Y C,Qiao P J,Zhao M,Xiang X H.2021. Evolution of the Pearl River and its implication for East Asian continental landscape reversion. Acta Geologica Sinica(English Edition), 95(1): 66-76. [35] Zhong L F,Li G,Yan W,Xia B,Feng Y X,Miao L,Zhao J X.2017. Using zircon U-Pb ages to constrain the provenance and transport of heavy minerals within the northwestern shelf of the South China Sea. Journal of Asian Earth Sciences, 134: 176-190. [36] Zhu W L,Cui Y C,Shao L,Qiao P J,Yu P,Pei J X,Liu X Y,Zhang H.2021. Reinterpretation of the northern South China Sea pre-Cenozoic basement and geodynamic implications of the South China continent: Constraints from combined geological and geophysical records. Acta Oceanologica Sinica, 40: 13-28.