Control of sedimentary environments on gas contents of coal seams: a case study of No.15 coals bed of the Taiyuan Formation in Shouyang area,Qinshui Basin
KANG Shilong, LÜ Yumin, WANG Cunwu, WANG Bo, LI Zhuolun, ZHANG Yue
CNOOC Research Institute Co., Ltd., Beijing 100028, China
Abstract:The property of coal seams is a dominant factor for the enrichment and high-yield of coal-bed methane(CBM). Sedimentary environments control the distribution and thickness of coal seams,the maceral composition and properties of coal,and the superimposed model of surrounding rocks as well as their thickness,and thus controlling the enrichment of CBM. In this study,sedimentary environments and sequence stratigraphy of the Taiyuan Formation in Shouyang area,northern Qinshui Basin were analyzed based on drilling cores,loggings and previous studies. Lithofacies and palaeogeography of the roof and floor systems of the No.15 coal bed were described in detail. The relationship between sedimentary environments and gas contents of the CBM was finally summarized,and the favorable zone for CBM exploration was delineated. The lower part of the Taiyuan Formation in Shouyang area mainly developed in shallow marine shelf,barrier island,and lagoon depositional system,whereas the upper part formed in the delta plain. The Taiyuan Formation records a 3rd-order transgressive-regressive sequence,which can be further divided into six 4th-order sequences(S1-S6). The S1 mainly developed on tidal flat,lagoon and barrier island. The gas content of different sedimentary facies declines is an order from lagoon,tidal flat to barrier island. The S2 mainly formed in barrier island,lagoon,tidal flat,shallow marine shelf depositional system. The gas content declines in an order of lagoon(with thick limestone),muddy shelf,carbonate shelf,lagoon,tidal flat,and barrier island. According to the relationship between sedimentary facies of the S1 and S2 and gas content of No.15 coal bed,the CBM reservoir of No.15 coal bed was subdivided into three types. Type Ⅰ reservoir is favorable for CBM exploration,which is mainly distributed in the east of the research area. Type Ⅱ reservoir is relatively favorable for CBM exploration,which is distributed in the east and west of the research area. Type Ⅲ is of poor CBM exploration prospect,which is mainly distributed in the northwest and the middle area the research area.
. Control of sedimentary environments on gas contents of coal seams: a case study of No.15 coals bed of the Taiyuan Formation in Shouyang area,Qinshui Basin[J]. JOPC, 2024, 26(2): 416-430.
[1] 冯增昭. 2004. 单因素分析多因素综合作图法: 定量岩相古地理重建. 古地理学报, 6(1): 3-19. [Feng Z Z.2004. Single factor analysis and multifactor comprehensive mapping method: reconstruction of quantitative lithofacies palaeogeography. Journal of Palaeogeography(Chinese Edition), 6(1): 3-19] [2] 冯增昭. 2016. 论古地理图. 古地理学报, 18(3): 285-314. [Feng Z Z.2016. On palaeogeographic map. Journal of Palaeogeography(Chinese Edition), 18(3): 285-314] [3] 李曙光,王成旺,王红娜,王玉斌,徐凤银,郭智栋,刘新伟. 2022. 大宁—吉县区块深层煤层气成藏特征及有利区评价. 煤田地质与勘探, 50(9): 59-67. [Li S G,Wang C W,Wang H N,Wang Y B,Xu F Y,Guo Z D,Liu X W.2022. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian block. Coal Geology & Exploration, 50(9): 59-67] [4] 李亚南. 2018. 山西沁水盆地东北部石炭—二叠系太原组沉积序列类型及其沉积环境. 河南理工大学硕士学位论文. [Li Y N.2018. Sedimentary types and their sedimentary environments of the Carboniferous-Permian Taiyuan Formation in northeastern Qinshui Basin,Shanxi Province. Masteral dissertation of Henan Polytechnic University] [5] 李阳阳. 2018. 沁水盆地北部太原—山西组沉积相与煤层气潜力研究. 中国地质大学(北京)硕士学位论文. [Li Y Y.2018. Rsearch on sedimentary facies and coalbed methane potential of Taiyuan Formation in the northern of Qinshui Basin. Masteral dissertation of China University of Geosciences(Beijing)] [6] 林畅松,张燕梅,刘景彦,庞保成. 2000. 高精度层序地层学和储层预测. 地学前缘, 7(3): 111-117. [Lin C S,Zhang Y M,Liu J Y,Pang B C.2000. High resolution sequence stratigraphy and reservoir prediction. Earth Science Frontiers, 7(3): 111-117] [7] 林中月,刘亢,魏迎春. 2020. 沁水盆地中北部石炭—二叠纪煤系构造演化特征. 煤田地质与勘探, 48(2): 85-91. [Lin Z Y,Liu K,Wei Y C.2020. Characteristics of tectonic evolution of Carboniferous-Permian coal measures in the north-central Qinshui Basin. Coal Geology & Exploration, 48(2): 85-91] [8] 柳迎红,吕玉民,郭广山,冯汝勇,王存武,朱学申,刘佳. 2018. 柿庄南区块煤层气储集层精细评价及其应用中国海上油气, 30(4): 113-119. [Liu Y H,Lü Y M,Guo G S,Feng R Y,Wang C W,Zhu X S,Liu J.2018. Refined reservoir evaluation and its application in coalbed methane reservoirs in Shizhuangnan block. China Offshore Oil and Gas, 30(4): 113-119] [9] 陆小霞. 2017. 沁水盆地南部深煤层煤层气地质特殊性及产能影响因素研究. 中国地质大学(北京)博士学位论文. [Lu X X.2017. The geological characteristics and the production effect factor of deep coal seam in southern Qinshui Basin. Doctoral dissertation of China University of Geosciences(Beijing)] [10] 马婷. 2021. 基于地质主控因素的阜康示范区煤层气富集高产特征研究. 中国煤层气, 18(3): 11-14. [Ma T.2021. Study on the characteristics of CBM enrichment and high yield in Fukang Demonstration Area based on geological main control factors. China Coalbed Methane, 18(3): 11-14] [11] 倪长宽,苏明军,袁成,刘化清,崔向丽. 2022. 基于地震沉积学的薄互层储集层分布预测方法. 石油勘探与开发, 49(4): 741-751. [Ni C K,Su M J,Yuan C,Liu H Q,Cui X L.2022. Thin-interbedded reservoirs prediction based on seismic sedimentology. Petroleum Exploration and Development, 49(4): 741-751] [12] 秦勇,傅雪海,岳巍,林大扬,叶建平,焦思红. 2000. 沉积体系与煤层气储盖特征之关系探讨古地理学报, 2(1): 77-84. [Qin Y,Fu X H,Yue W,Lin D Y,Ye J P,Jiao S H.2000. Relationship between depositional systems and characteristics of coalbed gas reservoir and its caprock. Journal of Palaeogeography(Chinese Edition), 2(1): 77-84] [13] 秦勇,宋党育. 1998. 山西南部煤化作用及其古地热系统: 兼论煤化作用的控气地质机理. 北京: 地质出版社. [Qin Y,Song D Y.1998. Coalification and Its Palaeogeothermal System in Southern Shanxi Province: Also on the Geological Mechanism of Coalification for Controlling Gas. Beijing: Geological Publishing House] [14] 桑树勋,韩思杰,刘世奇,周效志,李梦溪,胡秋嘉,张聪. 2022. 高煤阶煤层气富集机理的深化研究. 煤炭学报, 47(1): 388-403. [Sang S X,Han S J,Liu S Q,Zhou X Z,Li M X,Hu Q J,Zhang C.2022. Comprehensive study on the enrichment mechanism of coalbed methane in high rank coal reservoirs. Journal of China Coal Society, 47(1): 388-403] [15] 尚冠雄. 1995. 华北晚古生代聚煤盆地造盆构造述略. 中国煤田地质,(2): 1-6,17. [Shang G X.1995. An outline of basining structures of North China Late Paleozoic coal accumulation basin. Coal Geology of China,(2): 1-6,17] [16] 邵龙义,肖正辉,何志平,刘永福,尚潞君,张鹏飞. 2006. 晋东南沁水盆地石炭二叠纪含煤岩系古地理及聚煤作用研究. 古地理学报, 8(1): 43-52. [Shao L Y,Xiao Z H,He Z P,Liu Y F,Shang L J,Zhang P F.2006. Palaeogeography and coal acumuation for coal measures of the Carboniferous-Permian in Qinshui Basin,southeasterm Shanxi Province. Journal of Palaeogeography(Chinese Edition), 8(1): 43-52] [17] 邵龙义,肖正辉,汪浩,鲁静,周俊. 2008. 沁水盆地石炭—二叠纪含煤岩系高分辨率层序地层及聚煤模式. 地质科学, 43(4): 777-791. [Shao L Y,Xiao Z H,Wang H,Lu J,Zhou J.2008. Permo-Carboniferous coal measures in the Qinshui Basin: high-resolution sequence stratigraphy and coal accumulating models. Chinese Journal of Geology, 43(4): 777-791] [18] 邵龙义,董大啸,李明培,王海生,王东东,鲁静,郑明泉,程爱国. 2014. 华北石炭—二叠纪层序—古地理及聚煤规律. 煤炭学报, 39(8): 1725-1734. [Shao L Y,Dong D X,Li M P,Wang H S,Wang D D,Lu J,Zheng M Q,Cheng A G.2014. Sequence-paleogeography and coal accumulation of the Carboniferous-Permian in the North China Basin. Journal of China Coal Society, 39(8): 1725-1734] [19] 邵龙义,郑明泉,侯海海,董大啸,王海生. 2018. 山西省石炭—二叠纪含煤岩系层序—古地理与聚煤特征. 煤炭科学技术, 46(2): 1-8,34. [Shao L Y,Zheng M Q,Hou H H,Dong D X,Wang H S.2018. Characteristics sequence-palaeogeography and coal accumulation of Permo-Carboniferous coal measures in Shanxi Province. Coal Science and Technology, 46(2): 1-8,34] [20] 宋慧波,李亚南,于振峰,刘顺喜,胡斌,李紫源. 2018. 山西沁水盆地东北部太原组沉积序列及环境演化. 古地理学报, 20(4): 623-636. [Song H B,Li Y N,Yu Z F,Liu S X,Hu B,Li Z Y.2018. Sedimentary succession and environment evolution of the Taiyuan Formation in northeastern Qinshui Basin,Shanxi Province. Journal of Palaeogeography(Chinese Edition), 20(4): 623-636] [21] 王莹. 2013. 沁水盆地中—新生代构造变形及构造应力场特征. 南京大学博士学位论文. [Wang Y.2013. Mesozoic-Cenozoic structural deformation and tectonic stress field characteristics in the Qinshui Basin. Doctoral dissertation of Nanjing University] [22] 王莹,张庆龙,朱文斌,王良书,解国爱,邹旭. 2014. 沁水盆地北端中生代构造变形与构造应力场特征. 煤田地质与勘探, 42(1): 8-12,18. [Wang Y,Zhang Q L,Zhu W B,Wang L S,Xie G A,Zou X.2014. Mesozoic structural deformation and tectonic stress field characteristics in the north of Qinshui Basin. Coal Geology & Exploration, 42(1): 8-12,18] [23] 伊伟,涂志民,冯延青,李涛,姜虹. 2017. 韩城矿区煤层含气性分布规律及地质控制因素研究. 煤炭科学技术, 45(7): 156-160,206. [Yi W,Tu Z M,Feng Y Q,Li T,Jiang H.2017. Study on distribution laws of gas-bearing property of coal seams and geological control factors in Hancheng Mining Area. Coal Science and Technology, 45(7): 156-160,206] [24] 于兴河,李顺利,曹冰,侯国伟,王亚风,皇甫志远. 2017. 西湖凹陷渐新世层序地层格架与沉积充填响应. 沉积学报, 35(2): 299-314. [Yu X H,Li S L,Cao B,Hou G W,Wang Y F,Huangfu Z Y.2017. Oligocene sequence framework and depositional response in the Xihu Depression,East China Sea Shelf Basin. Acta Sedimentologica Sinica, 35(2): 299-314] [25] 张万春,郭布民,孔鹏,杜建波,陈玲,王春林. 2022. 柿庄南煤层气重复压裂裂缝形态反演及效果分析评价. 非常规油气, 9(1): 119-128. [Zhang W C,Guo B M,Kong P,Du J B,Chen L,Wang C L.2022. Fracture morphology inversion and effect evaluation of CBM refracturing in southern Shizhuang Block. Unconventional Oil & Gas, 9(1): 119-128] [26] 朱宝存,唐书恒,张佳赞. 2009. 煤岩与顶底板岩石力学性质及对煤储层压裂的影响. 煤炭学报, 34(6): 756-760. [Zhu B C,Tang S H,Zhang J Z.2009. Mechanics characteristics of coal and its roof and floor rock and the effects of hydraulic fracturing on coal reservoir. Journal of China Coal Society, 34(6): 756-760] [27] 朱筱敏,董艳蕾,曾洪流,林承焰,张宪国. 2020. 中国地震沉积学研究现状和发展思考. 古地理学报, 22(3): 397-411. [Zhu X M,Dong Y L,Zeng H L,Lin C Y,Zhang X G.2020. Research status and thoughts on the development of seismic sedimentology in China. Journal of Palaeogeography(Chinese Edition), 22(3): 397-411] [28] Bohacs K M,Suter J R.1997. Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples. AAPG Bulletin, 81(10): 1612-1639. [29] Catuneanu O.2002. Sequence stratigraphy of clastic systems: concepts,merits,and pitfalls. Journal of African Earth Sciences, 35(1): 1-43. [30] Catuneanu O.2006. Principles of Sequence Stratigraphy. Amsterdam: Elsevier,1-375. [31] Chen B Y,Stuart F M,Xu S,Györe D,Liu C Q.2019. Evolution of coal-bed methane in Southeast Qinshui Basin,China: insights from stable and noble gas isotopes. Chemical Geology, 529(2): 1192-1198. [32] Fielding C R.1987. Coal depositional models for deltaic and alluvial plain sequences. Geology, 15(7): 661-664. [33] Guo Z Q,Cao Y X,Zhang Z,Dong S.2022. Geological controls on the gas content and permeability of coal reservoirs in the Daning Block,southern Qinshui Basin. ACS Omega, 7(20): 17063-17074. [34] Horne J C,Ferm J C,Caruccio F T,Baganz B P.1978. Depositional models in coal exploration and mine planning in appalachian region. AAPG Bulletin, 62(12): 2379-2411. [35] Hou H H,Shao L Y,Wang S A,Xiao Z H,Wang X T,Li Z,Mu G Y.2019. Influence of depositional environment on coalbed methane accumulation in the Carboniferous-Permian coal of the Qinshui Basin,northern China. Frontiers of Earth Science, 13(3): 535-550. [36] Li Y N,Shao L Y,Fielding C R,Wang D W,Mu G Y.2021. Sequence stratigraphy,paleogeography,and coal accumulation in a lowland alluvial plain,coastal plain,and shallow-marine setting: Upper Carboniferous-Permian of the Anyang-Hebi coalfield,Henan Province,North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110287. [37] Liu L T,Jin C,Li L,Xu C Y,Sun P F,Meng Z X,An L L.2019. Coalbed methane adsorption capacity related to maceral compositions. Energy Exploration & Exploitation, 38(7): 79-91. [38] Liu R C,Ren Z L,Yang P,He H Y,Smith T M,Guo W,Wu L.2021. Mesozoic tectono-thermal event of the Qinshui Basin,central North China Craton: insights from illite crystallinity and vitrinite reflectance. Frontiers in Earth Sciences, 9: 1-16. [39] Shao L Y,Wang X T,Wang D D,Li M P,Wang S,Li Y J,Shao K,Zhang C,Gao C X,Dong D X,Cheng A G,Lu J,Ji C W,Gao D.2020. Sequence stratigraphy,paleogeography,and coal accumulation regularity of major coal-accumulating periods in China. International Journal of Coal Science & Technology, 7(2): 240-262. [40] Teng J,Yao Y B,Liu D M,Cai Y D.2015. Evaluation of coal texture distributions in the southern Qinshui basin,North China: investigation by a multiple geophysical logging method. International Journal of Coal Geology, 140(15): 9-22. [41] Wang S A,Shao L Y,Wang D D,Hilton J,Guo B A,Lu J.2020. Controls on accumulation of anomalously thick coals: implications for sequence stratigraphic analysis. Sedimentology, 67(2): 991-1013. [42] Zhao S,Shao L Y,Hou H H,Tang Y,Li Z,Yao M L,Zhang J Q.2018. Methane adsorption characteristics and its influencing factors of the medium-to-high rank coals in the Anyang-Hebi coalfield,northern China. Energy Exploration Exploitation, 37(1): 60-82.