Genesis and development model of glutenite body at the bottom of Qingshuihe Formation, western section of southern Junggar Basin
WANG Ke1,2, ZHOU Yong1,2, WANG Jian3, GAO Chonglong4, LIU Ming3, REN Ying4
1 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 2 National Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249,China; 3 Research Institute of Experiment and Detection,Xinjiang Oilfield Company,PetroChina,Xinjiang Karamay 834000,China; 4 Faculty of Petroleum,China University of Petroleum(Beijing)at Karamay,Xinjiang Karamay 834000,China
Abstract:Despite significant breakthroughs in oil and gas exploration in the glutenite section of the Qingshuihe Formation in the southern Junggar Basin,the sedimentary characteristics,genetic mechanism and controlling factors of the glutenite remain unclear,which has become a key restricting factor for hydrocarbon exploration. As such,we investigated the lower Qingshuihe Formation glutenite body in the western section of the southern Junggar Basin based on wireline logs,cores,outcrops and experimental data,with a focus on the lithofacies,lithofacies assemblage and distribution of the glutenite body,as well as their main controlling factors and genetic mechanism. Six types of lithofacies and lithofacies assemblages and genetically different glutenites are identified in the lowstand and transgression systems tracts of the Qingshuihe Formation in the western section of the southern Junggar Basin. The lowstand and transgression systems tracts of the Qingshuihe Formation in the southern Gaoquan area of the western section are dominated by alluvial fan and fan delta depositional systems,and braided river delta depositional system predominates the northern Caindic area. During the depositional period of the Qingshuihe Formation,glutenite sedimentation in the south western section of the Junggar Basin was affected by the nature of the parent rock in the provenance area,sediment supply and paleoclimate. Among them,nature of the parent rock in the provenance area and sediment supply control the sedimentary type and scale of the glutenite body. While paleoclimate affects the weathering and denudation degrees of the parent rock area and the sedimentary transport environment. Based on the controlling factors and sedimentary characteristics,a sedimentary model for the southern alluvial fan-fan delta and the northern braided river delta front of the Qingshuihe Formation lowstand and transgression systems tract in the western section of the southern Junggar Basin has been established,which can provide a geological basis to aid discrimination between different glutenite bodies and hydrocarbon exploration in similar settings.
WANG Ke,ZHOU Yong,WANG Jian et al. Genesis and development model of glutenite body at the bottom of Qingshuihe Formation, western section of southern Junggar Basin[J]. JOPC, 2024, 26(3): 600-619.
[1] 陈思芮. 2020. 东营凹陷北带盐家—永安地区沙四上亚段砂砾岩储层差异性研究. 中国石油大学(华东)硕士论文. [Chen S R.2020. Comparative study of glutenite reservoir differences of the Upper Es4 in the Yanjia-Yong’an Block of the Northern Zone of Dongying Depression. Masteral dissertation of China University of Petroleum(East China)] [2] 杜金虎,支东明,李建忠,杨迪生,唐勇,齐雪峰,肖立新,魏凌云. 2019. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望. 石油勘探与开发, 46(2): 205-215. [Du J H,Zhi D M,Li J Z,Yang D S,Tang Y,Qi X F,Xiao L X,Wei L Y.2019. Major breakthrough of Well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin,NW China. Petroleum Exploration and Development, 46(2): 205-215] [3] 方世虎,宋岩,贾承造,徐怀民,刘楼军,张健. 2006. 准噶尔盆地白垩系底砾岩与油气成藏的关系. 天然气工业, 26(5): 13-16,20. [Fang S H,Song Y,Jia C Z,Xu H M,Liu L J,Zhang J.2006. Relationship between Cretaceous basal conglomerate and oil/gas reservoiring in the Junggar Basin. Natural Gas Industry, 26(5): 13-16,20] [4] 高崇龙,纪友亮,任影,向宝力,王剑,李东旭,刘大卫,王天云,段小兵. 2015. 准噶尔盆地莫索湾地区白垩系清水河组沉积演化与有利砂体展布. 古地理学报, 17(6): 813-828. [Gao C L,Ji Y L,Ren Y,Xiang B L,Wang J,Li D X,Liu D W,Wang T Y,Duan X B.2015. Sedimentary evolution and favorable sandbody distribution of the Cretaceous Qingshuihe Formation in Mosuowan area,Junggar Basin. Journal of Palaeogeography(Chinese Edition), 17(6): 813-828] [5] 高崇龙,纪友亮,靳军,王剑,任影,曾力,王道伟,张昊,李谨杰. 2018. 古隆起埋藏期沟谷残丘地貌下沉积体系及油气藏发育模式: 以准噶尔盆地腹部石南地区清水河组一段为例. 天然气地球科学, 29(8): 1120-1137. [Gao C L,Ji Y L,Jin J,Wang J,Ren Y,Zeng L,Wang D W,Zhang H,Li J J.2018. Development model of sedimentary system and reservoir under valley-monadnock paleotopography during buried stage of paleouplift: case study of 1st member of K1q in Shinan area,hinterland of Junggar Basin. Natural Gas Geoscience, 29(8): 1120-1137] [6] 高崇龙,纪友亮,靳军,王剑,杨召,罗正江,任影,张月. 2020a. 阵发性洪水控制的河流型冲积扇沉积特征及沉积演化模式: 以和什托洛盖盆地北缘现代白杨冲积扇为例. 石油学报, 41(3): 310-328. [Gao C L,Ji Y L,Jin J,Wang J,Yang Z,Luo Z J,Ren Y,Zhang Y.2020a. Sedimentary characteristics and evolution model of fluvial fan dominated by intermittent flood flows: a case study of Baiyang alluvial fan within the northern margin of Heshituoluogai Basin. Acta Petrolei Sinica, 41(3): 310-328] [7] 高崇龙,王剑,靳军,纪友亮,罗正江,刘明,任影,张月. 2020b. 冲积扇沉积机制研究进展及其成因分类方案探讨. 地质论评, 66(6): 1650-1675. [Gao C L,Wang J,Jin J,Ji Y L,Luo Z J,Liu M,Ren Y,Zhang Y.2020b. Research progress on sedimentary mechanism of alluvial fan and discussion on the genetic classification scheme. Geological Review, 66(6): 1650-1675] [8] 高志勇,周川闽,冯佳睿,吴昊,李雯. 2016. 中新生代天山隆升及其南北盆地分异与沉积环境演化. 沉积学报, 34(3): 415-435. [Gao Z Y,Zhou C M,Feng J R,Wu H,Li W.2016. Relationship between the Tianshan Mountains uplift and depositional environment evolution of the basins In Mesozoic-Cenozoic. Acta Sedimentologica Sinica, 34(3): 415-435] [9] 高志勇,石雨昕,冯佳睿,周川闽,罗忠. 2022. 准噶尔盆地南缘侏罗系—下白垩统岩相古地理恢复与意义. 石油勘探与开发, 49(1): 68-80. [Gao Z Y,Shi Y X,Feng J R,Zhou C M,Luo Z.2022. Lithofacies paleogeography restoration and its significance of Jurassic to Lower Cretaceous in southern margin of Junggar Basin,NW China. Petroleum Exploration and Development, 49(1): 68-80] [10] 管树巍,何登发,雷永良,陈竹新. 2013. 中国中西部前陆冲断带运动学分类、模型与勘探领域. 石油勘探与开发, 40(1): 66-78. [Guan S W,He D F,Lei Y L,Chen Z X.2013. Kinematic classification,structural modeling and prospective fields of the foreland thrust belts in Midwest China. Petroleum Exploration and Development, 40(1): 66-78] [11] 关新,潘树新,曲永强,许多年,张寒,马永平,王国栋,陈雪珍. 2021. 准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力. 岩性油气藏, 33(1): 90-98. [Guan X,Pan S X,Qu Y Q,Xu D N,Zhang H,Ma Y P,Wang G D,Chen X Z.2021. Discovery and hydrocarbon exploration potential of beach-bar sand in Shawan sag,Junggar Basin. Lithologic Reservoirs, 33(1): 90-98] [12] 关旭同,吴朝东,吴鉴,周家全,焦悦,周嵘,于庆森. 2020. 准噶尔盆地南缘上侏罗统—下白垩统沉积序列及沉积环境演化. 新疆石油地质, 41(1): 67-79. [Guan X T,Wu C D,Wu J,Zhou J Q,Jiao Y,Zhou R,Yu Q S.2020. Sedimentary sequence and depositional environment evolution of Upper Jurassic-Lower Cretaceous strata in the southern margin of Junggar Basin. Xinjiang Petroleum Geology, 41(1): 67-79] [13] 何海清,支东明,雷德文,杨迪生,肖立新,袁波,齐雪峰,赵进雍. 2019. 准噶尔盆地南缘高泉背斜战略突破与下组合勘探领域评价. 中国石油勘探, 24(2): 137-146. [He H Q,Zhi D M,Lei D W,Yang D S,Xiao L X,Yuan B,Qi X F,Zhao J Y.2019. Strategic breakthrough in Gaoquan anticline and exploration assessment on lower assemblage in the southern margin of Junggar Basin. China Petroleum Exploration, 24(2): 137-146] [14] 胡潇,曲永强,胡素云,潘建国,尹路,许多年,滕团余,王斌. 2020. 玛湖凹陷斜坡区浅层油气地质条件及勘探潜力. 岩性油气藏, 32(2): 67-77. [Hu X,Qu Y Q,Hu S Y,Pan J G,Yin L,Xu D N,Teng T Y,Wang B.2020. Geological conditions and exploration potential of shallow oil and gas in slope area of Mahu sag,Junggar Basin. Lithologic Reservoirs, 32(2): 67-77] [15] 纪友亮,周勇,况军,万璐,张锐,卢春红. 2010. 准噶尔盆地车—莫古隆起形成演化及对沉积相的控制作用. 中国科学(地球科学), 40(10): 1342-1355. [Ji Y L,Zhou Y,Kuang J,Wan L,Zhang R,Lu C H.2010. Formation and evolution of Che-Mo paleo-uplift in Junggar Basin and its control on sedimentary facies. Scientia Sinica(Terrae), 40(10): 1342-1355] [16] 靳军,王剑,张晓刚,吐逊阿依. 吐拉洪,高崇龙,张宝真,罗正江. 2017. 莫索湾地区清水河组储层特征及优质储层控制因素分析. 新疆地质, 35(3): 295-300. [Jin J,Wang J,Zhang X G,Tu Xunay, T L H,Gao C L,Zhang B Z,Luo Z J.2017. Analysis of reservoir characteristics and controlling factors of high quality reservoir of Qingshuihe Formation in Mosuowan area. Xinjiang Geology, 35(3): 295-300] [17] 旷红伟,高振中,穆朋飞. 2008. 准噶尔盆地夏盐凸起石南31井区下白垩统清水河组一段物源分析. 古地理学报, 10(4): 371-378. [Kuang H W,Gao Z Z,Mu P F.2008. Provenance analysis of the Member 1 of Lower Cretaceous Qingshuihe Fomation in SN 3l well area in Xiayan uplift of Junggar Basin. Journal of Palaeogeography(Chinese Edition), 10(4): 371-378] [18] 梁则亮,庞志超,冀冬生,冯兴强,吴林,施辉. 2020. 四棵树凹陷超深层裂谷盆地的厘定及油气勘探意义. 新疆石油地质, 41(1): 18-24. [Liang Z L,Pang Z C,Ji D S,Feng X Q,Wu L,Shi H.2020. Discovery of ultra-deep rift basin and its petroleum exploration significance in sikeshu sag,Junggar Basin. Xinjiang Petroleum Geology, 41(1): 18-24] [19] 孟颖,靳军,高崇龙,李际,刘明,刘可,王柯,任影,邓毅. 2022. 准噶尔盆地南缘西段白垩系深层储层特征及物性保存机制. 天然气地球科学, 33(2): 218-232. [Meng Y,Jin J,Gao C L,Li J,Liu M,Liu K,Wang K,Ren Y,Deng Y.2022. Characteristics and physical property preservation mechanism of Cretaceous deep reservoir in western segment of southern margin of Junggar Basin. Natural Gas Geoscience, 33(2): 218-232] [20] 庞志超,焦悦,袁波,王家林,魏凌云,唐雪颖,周彦希,吴朝东. 2020. 准噶尔盆地南缘二叠—三叠纪原型盆地性质与沉积环境演化. 地质学报, 94(6): 1813-1838. [Pang Z C,Jiao Y,Yuan B,Wang J L,Wei L Y,Tang X Y,Zhou Y X,Wu C D.2020. Permian-Triassic depositional environmental evolution and the prototype basin of the southern Junggar Basin. Acta Geologica Sinica, 94(6): 1813-1838] [21] 饶政,姚鹏翔,张春光,刘静,安志渊,高振中. 2008. 准噶尔盆地石南31井区下白垩统清水河组一段辫状河三角洲相及沉积演化. 古地理学报, 10(1): 43-52. [Rao Z,Yao P X,Zhang C G,Li J,An Z Y,Gao Z Z.2008. Braided fluvial delta facies and sedientary evolution of the Member 1 of Qingshuihe Fomation of Lower Cretaceous in Shinan 31 wellblock Junggar Basin. Journal of Palaeogeography(Chinese Edition), 10(1): 43-52] [22] 司学强,袁波,郭华军,徐洋,陈能贵,彭博. 2020. 准噶尔盆地南缘清水河组储集层特征及其主控因素. 新疆石油地质, 41(1): 38-45. [Si X Q,Yuan B,Guo H J,Xu Y,Chen N G,Peng B.2020. Reservoir characteristics and main controlling factors of Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin. Xinjiang Petroleum Geology, 41(1): 38-45] [23] 唐湘飞,贾为卫,鲁克改,张强. 2018. 准噶尔盆地南缘下白垩统钙质砾岩铀矿化成因及找矿方向. 新疆地质, 36(3): 399-405. [Tang X F,Jia W W,Lu K G,Zhang Q.2018. Uranium mineralization and prospecting direction of lower Cretaceous calcareous conglomerate in the southern margin of Junggar Basin. Xinjiang Geology, 36(3): 399-405] [24] 王多云,陈应泰,徐洪生. 1991. 受周期性湖平面升降控制的冲积扇—扇三角洲沉积体系: 柴达木盆地阿尔金山前西段干柴沟组. 沉积学报, 9(4): 43-48. [Wang D Y,Chen Y T,Xu H S.1991. Alluvial fan-fandelta-lacustrine sedimentary system controlled by lake-level changes: Ganchaigou Formation(tertiary),front of aerjinshan,western Chaidam Basin,China. Acta Sedimentologica Sinica, 9(4): 43-48] [25] 汪孝敬,白保军,芦慧,梁则亮,赵长永,胡意,胡鑫,李雷. 2022. 深层—超深层高温极强超压砂砾岩储层特征及主控因素: 以准噶尔盆地南缘四棵树凹陷高泉地区白垩系清水河组为例. 东北石油大学学报, 46(3): 54-65,Ⅳ-Ⅴ. [Wang X J,Bai B J,Lu H,Liang Z L,Zhao C Y,Hu Y,Hu X,Li L.2022. Characteristics and main controlling factors of deep-ultra-deep glutenite reservoir with extremely high temperature and overpressure: a case study of Cretaceous Qingshuihe Formation in Gaoquan area,Sikeshu sag,southern margin of Junggar Basin. Journal of Northeast Petroleum University, 46(3): 54-65,Ⅳ-Ⅴ] [26] 王亚如,张昌民,冀冬升,朱锐,付文俊,王泽宇,刘家乐. 2022. 齐古断褶带头屯河组: 清水河组地球化学特征及古环境. 新疆石油地质, 43(5): 563-571. [Wang Y R,Zhang C M,Ji D S,Zhu R,Fu W J,Wang Z Y,Liu J L.2022. Geochemical characteristics and paleoenvironment of Toutunhe Formation-Qingshuihe Formation in Qigu fault-fold belt. Xinjiang Petroleum Geology, 43(5): 563-571] [27] 杨烨,何中波. 2016. 准噶尔盆地中新生代古气候演化特征及对砂岩型铀成矿作用的制约. 世界核地质科学, 33(3): 140-145. [Yang Y,He Z B.2016. Characteristics of Mesozoic-Cenozoic paleoclimate evolution and its constraint on mineralization of sandstone type uranium deposit in Junggar Basin,Xinjiang,China. World Nuclear Geoscience, 33(3): 140-145] [28] 于兴河,王德发,郑浚茂. 1992. 华北地区二叠系岩相组合类型、剖面特点及沉积体系. 沉积学报, 10(1): 27-35. [Yu X H,Wang D F,Zheng J M.1992. Lithofacies association types or sequences and depositional system of Permian sandstones in North China. Acta Sedimentologica Sinica, 10(1): 27-35] [29] 于兴河,瞿建华,谭程鹏,张磊,李晓路,高照普. 2014. 玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式. 新疆石油地质, 35(6): 619-627. [Yu X H,Qu J H,Tan C P,Zhang L,Li X L,Gao Z P.2014. Conglomerate lithofacies and origin models of fan deltas of baikouquan formation in Mahu sag,Junggar Basin. Xinjiang Petroleum Geology, 35(6): 619-627] [30] 于兴河,李顺利,谭程鹏,瞿建华,张驰,赵晨帆. 2018. 粗粒沉积及其储层表征的发展历程与热点问题探讨. 古地理学报, 20(5): 713-736. [Yu X H,Li S L,Tan C P,Ou J H,Zhang C,Zhao C F.2018. Coarse-grained deposits and their reservoir characterizations: a look back to see forward and hot issues. Journal of Palaeogeography(Chinese Edition), 20(5): 713-736] [31] 张志杰,李伟,杨家静,杨晓萍,李登华. 2009. 川中广安地区上三叠统须家河组岩相组合与沉积特征. 地学前缘, 16(1): 296-305. [Zhang Z J,Li W,Yang J J,Yang X P,Li D H.2009. Lithofacies association and depositional characteristics of the Upper Triassic Xujiahe Formation in Guang’an Area,Central Sichuan Basin. Earth Science Frontiers, 16(1): 296-305] [32] 赵文智,胡素云,郭绪杰,李建忠,曹正林. 2019. 油气勘探新理念及其在准噶尔盆地的实践成效. 石油勘探与开发, 46(5): 811-819. [Zhao W Z,Hu S Y,Guo X J,Li J Z,Cao Z L.2019. New concepts for deepening hydrocarbon exploration and their application effects in the Junggar Basin,NW China. Petroleum Exploration and Development, 46(5): 811-819] [33] 支东明,曹剑,向宝力,秦志军,王婷婷. 2016. 玛湖凹陷风城组碱湖烃源岩生烃机理及资源量新认识. 新疆石油地质, 37(5): 499-506. [Zhi D M,Cao J,Xiang B L,Qin Z J,Wang T T.2016. Fengcheng alkaline lacustrine source rocks of Lower Permian in Mahu sag in Junggar Basin: hydrocarbon generation mechanism and petroleum resources reestimation. Xinjiang Petroleum Geology, 37(5): 499-506] [34] 周天琪,吴朝东,袁波,史忠奎,王家林,朱文,周彦希,姜晰,赵进雍,王军,马健. 2019. 准噶尔盆地南缘侏罗系重矿物特征及其物源指示意义. 石油勘探与开发, 46(1): 65-78. [Zhou T Q,Wu C D,Yuan B,Shi Z K,Wang J L,Zhu W,Zhou Y X,Jiang X,Zhao J Y,Wang J,Ma J.2019. New insights into multiple provenances evolution of the Jurassic from heavy minerals characteristics in southern Junggar Basin,NW China. Petroleum Exploration and Development, 46(1): 65-78] [35] 朱明,汪新,肖立新. 2020. 准噶尔盆地南缘构造特征与演化. 新疆石油地质, 41(1): 9-17. [Zhu M,Wang X,Xiao L X.2020. Structural characteristics and evolution in the southern margin of Junggar Basin. Xinjiang Petroleum Geology, 41(1): 9-17] [36] 朱明,施辉,袁波,冯兴强,吴林,唐雪颖,张浩,庞志超. 2022. 准南四棵树凹陷沉积古环境与物源研究: 来自侏罗系—下白垩统元素地球化学的指示. 沉积学报, 40(4): 1122-1136. [Zhu M,Shi H,Yuan B,Feng X Q,Wu L,Tang X Y,Zhang H,Pang Z C.2022. Palaeoenvironment and provenance of the Sikeshu sag in the Junggar Basin: indications from element geochemical records. Acta Sedimentologica Sinica, 40(4): 1122-1136] [37] Ben David-Novak H,Morin E,Enzel Y.2004. Modern extreme storms and the rainfall thresholds for initiating debris flows on the hyperarid western escarpment of the Dead Sea,Israel. Geological Society of America Bulletin, 116: 718. [38] Blair T C.1999a. Sedimentary processes and facies of the waterlaid Anvil Spring Canyon alluvial fan,Death Valley,California. Sedimentology, 46: 913-940. [39] Blair T C.1999b. Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan,Death Valley,California. Sedimentology, 46: 941-965. [40] Caine N.1980. The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Annaler Series A: Physical Geography, 62: 23-27. [41] De Haas T,van den Berg W,Braat L,Kleinhans M G.2016. Autogenic avulsion,channelization and backfilling dynamics of debris-flow fans. Sedimentology, 63: 1596-1619. [42] Dickinson W R.1985. Interpreting provenance relations from detrital modes of sandstones. Zuffa G G(ed). Provenance of Arenites. Dordrecht: Springer Netherlands, 333-361. [43] Harvey A.2004. The response of dry-region alluvial fans to quaternary climatic change. Desertification in the Third Millennium. Taylor & Francis: 75-90. [44] Hooke R L.2000. Toward a uniform theory of clastic sediment yield in fluvial systems. Geological Society of America Bulletin, 112: 1778-1786. [45] Jolivet M,Brunel M,Seward D,Xu Z,Yang J,Roger F,Tapponnier P,Malavieille J,Arnaud N,Wu C.2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: fission-track constraints. Tectonophysics, 343: 111-134. [46] Levson V M,Rutter N W.2000. Influence of bedrock geology on sedimentation in Pre-Late Wisconsinan alluvial fans in the Canadian Rocky Mountains. Quaternary International, 68-71: 133-146.