Abstract:During deposition of the Middle Ordovician Majiagou Formation,a series of paleo-uplift was discovered around the Ordos restricted sea. It remains relatively poorly studied as to how Lüliang paleo-uplift controlled deposition of the Majiagou Formation,which restricted understanding of sedimentary environments of the Majiagou Formation in the northeastern part of the basin. Through detailed measurement and sampling analysis of the Fugu outcrop in Shaanxi Province,combined with the drilling and core data,stratigraphic thickness,lithofacies and microfacies of the Majiagou Formation were studied. Lastly,controls of the Lüliang paleo-uplift on deposition of the Majiagou Formation are discussed. The research results show that: (1)the Lüliang paleo-uplift intermittently blocked the seawater circulation between the Ordos restricted sea and the North China sea. (2)The paleo-uplift was located underwater during the high sea level period,and the barrier to seawater circulation was weak;the stratal thickness in the west of the paleo-uplift has little variation;the underwater paleo-uplift formed a limestone flat,and limestone flat and limestone/dolomite flat formed in the west of the Lüliang paleo-uplift. (3)During the low sea-level period,the paleo-uplift was intermittently subaerially exposed,and obviously blocked circulation of seawater between the Ordos restricted sea and North China sea;the stratal thickness decreases in the east of the paleo-uplift,and sedimentary facies changes from muddy dolomite in the paleo-uplift to limestone in the east of the paleo-uplift. The stratal thickness increases significantly to the west of the paleo-uplift,forming argillaceous dolomite flat,gypsum dolomite flat,and gypsum and saline lacustrine facies. The study provides petrological and paleo-environmental evidence for the Majiagou Formation in the eastern part of the basin.
DING Xiaoqi,TIAN Yinyu,LEI Tao et al. Control of Lüliang paleo-uplift on deposition of the Ordovician Majiagou Formation in Ordos Basin: evidence from Fugu outcrop in Shaanxi[J]. JOPC, 2024, 26(3): 671-682.
[1] 包洪平,杨承运,黄建松. 2004. “干化蒸发”与“回灌重溶”: 对鄂尔多斯盆地东部奥陶系蒸发岩成因的新认识. 古地理学报, 6(3): 279-288. [Bao H P,Yang C Y,Huang J S.2004. “Evaporation drying” and “reinfluxing and redissolving”: a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 6(3): 279-288] [2] 包洪平,何登发,王前平,张雷,张建伍,严婷,闫伟. 2022. 鄂尔多斯盆地四大古隆起演化及其油气控藏意义的差异. 古地理学报, 24(5): 951-969. [Bao H P,He D F,Wang Q P,Zhang L,Zhang J W,Yan T,Yan W.2022. Four main paleouplifts evolution in Ordos Basin and their differences in significance of oil and gas reservoir control. Journal of Palaeogeography(Chinese Edition), 24(5): 951-969] [3] 丁晓琪,高景云,祁壮壮,张威,刘四洪,李春堂. 2022. 鄂尔多斯盆地北部奥陶系马家沟组中组合承压水岩溶特征. 天然气勘探与开发, 45(4): 1-9. [Ding X Q,Gao J Y,Qi Z Z,Zhang W,Liu S H,Li C T.2022. Characteristics of confined-water karst in middle assemblage of the Ordovician Majiagou Formation,northern Ordos Basin. Natural Gas Exploration and Development, 45(4): 1-9] [4] 董云鹏,惠博,孙圣思,杨钊,张菲菲,何登峰,孙娇鹏,史小辉. 2022. 中国中央造山系原—古特提斯多阶段复合造山过程. 地质学报, 96(10): 3426-3448. [Dong Y P,Hui B,Sun S S,Yang Z,Zhang F F,He D F,Sun J P,Shi X H.2022. Multiple orogeny and geodynamics from proto-Tethys to paleo-Tethys of the Central China Orogenic Belt. Acta Geologica Sinica, 96(10): 3426-3448] [5] 冯增昭. 1990. 华北地台早古生代岩相古地理. 北京: 地质出版社. [Feng Z Z.1990. Lithofacies paleogeography of Early Paleozoic of North China Platform.Beijing: Geological Publishing House] [6] 付金华,王宝清,孙六一,包洪平,徐波. 2011. 鄂尔多斯盆地苏里格地区奥陶系马家沟组白云石化. 石油实验地质, 33(3): 266-273. [Fu J H,Wang B Q,Sun L Y,Bao H P,Xu B.2011. Dolomitization of Ordovician Majiagou Formation in Sulige region,Ordos Basin. Petroleum Geology & Experiment, 33(3): 266-273] [7] 付金华,吴兴宁,孙六一,于洲,黄正良,丁振纯. 2017. 鄂尔多斯盆地马家沟组中组合岩相古地理新认识及油气勘探意义. 天然气工业, 37(3): 9-16. [Fu J H,Wu X N,Sun L Y,Yu Z,Huang Z L,Ding Z C.2017. New understandings of the lithofacies paleogeography of the middle assemblage of Majiagou Fm in the Ordos Basin and its exploration significance. Natural Gas Industry, 37(3): 9-16] [8] 何登发,包洪平,孙方源,张才利,开百泽,许艳华,成祥,翟咏荷. 2020. 鄂尔多斯盆地中央古隆起的地质结构与成因机制. 地质科学, 55(3): 627-656. [He D F,Bao H P,Sun F Y,Zhang C L,Kai B Z,Xu Y H,Cheng X,Zhai Y H.2020. Geologic structure and genetic mechanism for the central uplift in the Ordos Basin. Chinese Journal of Geology, 55(3): 627-656] [9] 何发岐,张威,丁晓琪,祁壮壮,李春堂,孙涵静. 2023. 鄂尔多斯盆地乌审旗古隆起对岩溶气藏的控制机理. 石油与天然气地质, 44(2): 276-291. [He F Q,Zhang W,Ding X Q,Qi Z Z,Li C T,Sun H J.2023. Controlling mechanism of Wushenqi paleo-uplift on paleo-karst gas reservoirs in Ordos Basin. Oil & Gas Geology, 44(2): 276-291] [10] 李承森. 1994. 生物进化的重大事件: 陆地植物的起源及其研究的新进展. 中国科学基金, 8(4): 238-244. [Li C S.1994. Origin of land plants is an important event of life evolution. Bulletin of National Science Foundation of China, 8(4): 238-244] [11] 李文厚,陈强,李智超,王若谷,王妍,马瑶. 2012. 鄂尔多斯地区早古生代岩相古地理. 古地理学报, 14(1): 85-100. [Li W H,Chen Q,Li Z C,Wang R G,Wang Y,Ma Y.2012. Lithofacies palaeogeography of the Early Paleozoic in Ordos area. Journal of Palaeogeography(Chinese Edition), 14(1): 85-100] [12] 邵东波,包洪平,魏柳斌,蔡郑红,武春英,周黎霞,曹岩刚. 2019. 鄂尔多斯地区奥陶纪构造古地理演化与沉积充填特征. 古地理学报, 21(4): 537-556. [Shao D B,Bao H P,Wei L B,Cai Z H,Wu C Y,Zhou L X,Cao Y G.2019. Tectonic palaeogeography evolution and sedimentary filling characteristics of the Ordovician in the Ordos area. Journal of Palaeogeography(Chinese Edition), 21(4): 537-556] [13] 魏柳斌,陈洪德,郭玮,严婷,蔡郑红,周黎霞. 2021. 鄂尔多斯盆地乌审旗—靖边古隆起对奥陶系盐下沉积与储层的控制作用. 石油与天然气地质, 42(2): 391-400. [Wei L B,Chen H D,Guo W,Yan T,Cai Z H,Zhou L X.2021. Wushen-Jingbian Paleo-uplift and its control on the Ordovician subsalt deposition and reservoirs in Ordos Basin. Oil & Gas Geology, 42(2): 391-400] [14] 徐旺林,李建忠,刘新社,李宁熙,张才利,张月巧,付玲,白莹,黄正良,高建荣,孙远实,宋微. 2021. 鄂尔多斯盆地奥陶系下组合天然气成藏条件与勘探方向. 石油勘探与开发, 48(3): 549-561. [Xu W L,Li J Z,Liu X S,Li N X,Zhang C L,Zhang Y Q,Fu L,Bai Y,Huang Z L,Gao J R,Sun Y S,Song W.2021. Accumulation conditions and exploration directions of Ordovician lower assemblage natural gas,Ordos Basin,NW China. Petroleum Exploration and Development, 48(3): 549-561] [15] 薛进庄,王嘉树,李炳鑫,黄璞,刘乐. 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648-3664. [Xue J Z,Wang J S,Li B X,Huang P,Liu L.2022. Origin and early evolution of land plants and the effects on Earth’s environments. Earth Science, 47(10): 3648-3664] [16] 周进高,席胜利,邓红婴,于洲,刘新社,丁振纯,李维岭,唐瑾. 2020. 鄂尔多斯盆地寒武系—奥陶系深层海相碳酸盐岩构造—岩相古地理特征. 天然气工业, 40(2): 41-53. [Zhou J G,Xi S L,Deng H Y,Yu Z,Liu X S,Ding Z C,Li W L,Tang J.2020. Tectonic-lithofacies paleogeographic characteristics of Cambrian-Ordovician deep marine carbonate rocks in the Ordos Basin. Natural Gas Industry, 40(2): 41-53] [17] Boggs S.2009. Petrology of Sedimentary Rocks(2nd edition). New York: Cambridge University Press. [18] De Putter T,Rouchy J M,Herbosch A,Keppens E,Pierre C,Groessens E.1994. Sedimentology and palaeo-environment of the upper Visean anhydrite of the Franco-Belgian Carboniferous basin(Saint-Ghislain borehole,southern Belgium). Sedimentary Geology, 90(1-2): 77-93. [19] Haq B,Gorini C,Baur J,Moneron J,Rubino J-L.2020. Deep Mediterranean’s Messinian evaporite giant: how much salt?Global and Planetary Change, 184(10): 103052. [20] James N P,Dalrymple R W.2010. Facies Model 4. Geological Association of Canada. [21] James N P,Jones B.2015. Origin of Carbonate Sedimentary Rocks. New York: John Wiley and Sons. [22] Manche C J,Kaczmarek S E.2019. Evaluating reflux dolomitization using a novel high-resolution record of dolomite stoichiometry: a case study from the Cretaceous of central Texas,USA. Geology, 47(6): 586-590. [23] Meng X H,Ge M,Tucker M E.1997. Sequence stratigraphy,sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114(1): 189-222. [24] Reading H G.1996. Sedimentary Environments: Processes,Facies and Stratigraphy. Oxford: Blackwell Science. [25] Topper R P,Meijer P T.2015. The processional phase lag of Messinian gypsum deposition in Mediterranean marginal basins. Palaeogeography,Palaeoclimatology,Palaeoecology, 417(60): 6-16. [26] Tucker M E,Wright V P.1990. Carbonate Sedimentology. Oxford: Basil Blackwell. [27] Warren J.2000. Dolomite: occurrence,evolution and economically important associations. Earth-Science Reviews, 52(1-3): 1-81.