Collaborative controls of the Early-Eocene greenhouse climates and transgression on deposition of salt-bearing sequence of Kumugeliemu Group in Kuqa Depression
ZHANG Xiting1,2, FAN Kunyu3, GUO Pei1,2, LI Pengzhen3, MIAO Rulin2,4, DENG Bin2,4
1 Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources,Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China; 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China; 3 Research Institute of Exploration & Development PetroChina Tarim Oilfield Company,Xinjiang Korla 652801,China; 4 School of Energy,Chengdu University of Technology,Chengdu 610059,China
Abstract:The thick salt-bearing sequence in Paleogene Kumugeliemu Group(54-46 Ma)of the Kuqa Depression acts as the high-quality regional caps for oil and gas accumulation. However,the original temporal-spatial distribution,palaeogeographic environment,and sedimentary controlling factors of the salt-bearing sequence remain unclear,which causes great difficulties for the drilling of the subsalt hydrocarbon reservoirs. Through the outcrop measurement at the basin margin and the logging element analysis within the basin,the correlation of sedimentary cycles between the lake-basin center and the margin was carried out to explore the main controlling factors of the salt-bearing sequence deposition of Kumugeliemu Group. The Kumugeliemu Group consists of three third-order cycles. The first third-order cycle Ⅰ1 is characterized by the lithofacies assemblage of conglomerates,sandstones,mudstones and gypsums at basin margins,and of mudstones,gypsums,halites,carbonates at basin center,indicating an palaeogeographic-environment transformation from a terrigenous basin to a continental-margin basin. The second third-order cycle Ⅰ2 is characterized by the lithofacies assemblage of conglomerates,sandstones,mudstones,and gypsums at basin margins and the assemblage of thick halites and minor mudstones at basin center,corresponding to a depositional model of a terrigenous epeiric basin. The third third-order cycle Ⅰ3 has similar lithofacies assemblage at the lake-basin margin and center,characterized by thin layer gypseous mudstones and mudstones,typical depositional model of terrigenous playa lakes. Combined with the Early-Eocene global climates and sea-level changes,it is believed that the deposition of thick gypsum rocks of Ⅰ1(ca. 54-51 Ma)were related to the Early Eocene Climatic Optimum(53-51 Ma)and global sea-level rise. The deposition of thick halite rocks in Ⅰ2(ca. 51-48 Ma)was controlled by the global dry climate and sea-level rise. The absence of thick salt-bearing sequence deposits in Ⅰ3(ca. 48-46 Ma)is related to the global dry climate and sea-level drops.
ZHANG Xiting,FAN Kunyu,GUO Pei et al. Collaborative controls of the Early-Eocene greenhouse climates and transgression on deposition of salt-bearing sequence of Kumugeliemu Group in Kuqa Depression[J]. JOPC, 2024, 26(4): 926-940.
[1] 曹养同,杨海军,刘成林,顾乔元,焦鹏程,卢玉红. 2010. 库车盆地古—新近纪蒸发岩沉积对喜马拉雅构造运动期次的响应. 沉积学报, 28(6): 1054-1065. [Cao Y T,Yang H J,Liu C L,Gu Q Y,Jiao P C,Lu Y H.2010. Response on sediment of evaporate in Kuqa Basin from Paleogene to Neogene period and Himalayan tectonic phase. Acta Sedimentologica Sinica, 28(6): 1054-1065] [2] 曹养同,刘成林,颜辉,焦鹏程,张华,吕凤琳,丁婷. 2016. 中—新生代塔里木与中亚盐湖链蒸发岩沉积及其控制因素初探. 矿床地质, 35(3): 591-604. [Cao Y T,Liu C L,Yan H,Jiao P C,Zhang H,Lü F L,Ding T.2016. Research on evaporite deposit and its controlling factors for saline lake chain of Tarim Basin and Central Asia Basin during Mesozoic-Cenozoic period. Mineral Deposits, 35(3): 591-604] [3] 陈荣林. 1996. 塔里木盆地第三纪含盐系地质特征研究. 化工矿产地质, 18(4): 276-283. [Chen R L.1996. Geological characteristics of the tertiary salt-bearing sequences in Tarim Basin. Geology of Chemical Minerals, 18(4): 276-283] [4] 丁道桂,刘伟新,崔可锐,王道轩,孙世群. 1997. 塔里木中新生代前陆盆地构造分析与油气领域. 石油实验地质, 19(2): 97-107. [Ding D G,Liu W X,Cui K R,Wang D X,Sun S Q.1997. Tectonic analyses and hydrocarbon domains in the Mesozoic and Cenozoic foreland basins of Tarim. Petroleum Geology & Experiment, 19(2): 97-107] [5] 冯展涛. 2022. 青藏高原东北缘临夏盆地始新世地层序列及其构造—气候意义. 兰州大学博士学位论文. [Feng Z T.2022. Eocene stratigraphic sequence and its tectonic-climatic significance in Linxia Basin,northeastern margin of Qinghai-Tibet Plateau. Doctoral dissertation of Lanzhou University] [6] 郭宪璞. 1991. 新疆克孜勒苏群的沉积环境探讨: 兼论塔里木盆地西部白垩系最低海相层位. 地质学报, 65(2): 188-198. [Guo X P.1991. An approach to the depositional environment of the Cretaceous Kizilsu group: the lowermost marine horizon of the Cretaceous in the western Tarim Basin. Acta Geologica Sinica, 65(2): 188-198] [7] 郭宪璞,丁孝忠,何希贤,李汉敏,苏新,彭阳. 2002. 塔里木盆地中新生代海侵和海相地层研究的新进展. 地质学报, 76(3): 299-307. [Guo X P,Ding X Z,He X X,Li H M,Su X,Peng Y.2002. New progress in the study of marine transgressional events and marine strata of the meso-cenozoic in the Tarim Basin. Acta Geologica Sinica, 76(3): 299-307] [8] 何承全,宋之琛,祝幼华. 2009. 中国沟鞭藻类化石. 北京: 科学出版社. [He C Q,Song Z C,Zhu Y H.2009. China Dinoflagellate Fossils. Beijing: Science Press] [9] 何登发,贾承造,德生,张朝军,孟庆任,石昕. 2005. 塔里木多旋回叠合盆地的形成与演化. 石油与天然气地质, 26(1): 64-77. [He D F,Jia C Z,De S,Zhang C J,Meng Q R,Shi X.2005. Formation and evolution of polycyclic superimposed Tarim Basin. Oil & Gas Geology, 26(1): 64-77] [10] 胡兰英. 1982. 塔里木盆地晚第三纪有孔虫古生态及地质意义. 科学通报, 27(15): 938-941. [Hu L Y.1982. Late Tertiary foraminifer ecology of the Tarim Basin and its geological significance. Chinese Science Bulletin, 27(15): 938-941] [11] 郇志鹏,胡剑风,王志民,宋金鹏,莫涛,郝祥保,田盼盼,崔德育,杨敬博,李浩平,刘新宇,平忠伟. 2022. 库车坳陷古近系盐底卡层技术研究与应用. 中国石油勘探, 27(1): 142-150. [Huan Z P,Hu J F,Wang Z M,Song J P,Mo T,Hao X B,Tian P P,Cui D Y,Yang J B,Li H P,Liu X Y,Ping Z W.2022. Research and application of the base salt rock discrimination of the Paleogene in Kuqa Depression. China Petroleum Exploration, 27(1): 142-150] [12] 贾承造. 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社. [Jia C Z.1997. Structural Characteristics and Oil and Gas in Tarim Basin,China. Beijing: Petroleum Industry Press] [13] 贾承造. 1999. 塔里木盆地构造特征与油气聚集规律. 新疆石油地质, 20(3): 177-183. [Jia C Z.1999. Structural characteristics and oil/gas accumulative regularity in Tarim Basin. Xinjiang Petroleum Geology, 20(3): 177-183] [14] 贾进华. 2002. 新疆库车坳陷中、新生界碳酸盐岩及其成因意义. 古地理学报, 4(4): 30-38. [Jia J H.2002. Carbonate rocks and their genetic significance of the Mesozoic and Cenozoic in kuqa depression of Xinjiang area. Journal of Palaeogeography(Chinese Edition), 4(4): 30-38] [15] 李玉英. 2007. 库车盆地古近纪沉积环境与岩相古地理研究. 中国地质大学(北京)硕士学位论文. [Li Y Y.2007. The research on depositional environments and lithofacies palaeogeography in Kuqa Basin. Masteral dissertation of China University of Geosciences(Beijing)] [16] 刘成林,王弭力,焦鹏程,陈永志. 2006. 世界主要古代钾盐找矿实践与中国找钾对策. 化工矿产地质, 28(1): 1-8. [Liu C L,Wang M L,Jiao P C,Chen Y Z.2006. The exploration experiences of potash deposits in the world and probing of countermeasures of China's future potash-deposits investigation. Geology of Chemical Minerals, 28(1): 1-8] [17] 刘成林,曹养同,杨海军,焦鹏程,顾乔元. 2013a. 库车前陆盆地古近纪—新近纪盐湖环境变迁及其成钾效应探讨. 地球学报, 34(5): 547-558. [Liu C L,Cao Y T,Yang H J,Jiao P C,Gu Q Y.2013a. Discussion on paleogene-neogene Environmental Change of Salt Lakes in Kuqa Foreland Basin and its potash-forming Effect. Acta Geoscientica Sinica, 34(5): 547-558] [18] 刘成林,焦鹏程,宣之强,曹养同,赵宪福. 2013b. 库车盆地古近系蒸发岩中钾盐矿物研究进展. 地质论评, 59(2): 233-234. [Liu C L,Jiao P C,Xuan Z Q,Cao Y T,Zhao X F.2013b. Research progress of sylvite in the Paleogene Evaporates in Kuqa Basin. Geological Review, 59(2): 233-234] [19] 刘子涵,李建明,陈琰,柳金城,崔俊. 2022. 微量元素在沉积环境中的应用: 以柴西英西地区下干柴沟组上段为例. 中外能源, 27(6): 23-34. [Liu Z H,Li J M,Chen Y,Liu J C,Cui J.2022. Application of trace elements in sedimentary environment: case study of upper member of lower Ganchaigou formation in Yingxi area,Western Qaidam Basin. Sino-Global Energy, 27(6): 23-34] [20] 卢华复,陈楚铭,刘志宏,贾东,王国强,贾承造. 2000. 库车再生前陆逆冲带的构造特征与成因. 石油学报, 21(3): 18-24. [Lu H F,Chen C M,Liu Z H,Jia D,Wang G Q,Jia C Z.2000. The structural features and origin of the kuqa rejuvenation foreland thrust belt. Acta Petrolei Sinica, 21(3): 18-24] [21] 马宝林,王琪. 1997. 青海湖现代沉积物的元素分布特征. 沉积学报, 15(3): 120-125. [Ma B L,Wang Q.1997. Distribution characteristics of elements in modern sediments of Qinghai Lake. Acta Sedimentologica Sinica, 15(3): 120-125] [22] 马新华. 2000. 含盐油气盆地. 北京: 石油工业出版社. [Ma X H.2000. Saline Oil and Gas Basin. Beijing: Petroleum Industry Press] [23] 苗运法,方小敏,宋之琛,吴福莉,韩文霞. 2008. 青藏高原北部始新世孢粉记录与古环境变化. 中国科学(D辑),(2): 187-196. [Miao Y F,Fang X M,Song Z C,Wu F L,Han W X.2008. Eocene palynological records and paleo-environmental changes in the northern Tibetan Plateau. Science in China Press(Series D),(2): 187-196] [24] 邵龙义,何志平,顾家裕,罗文林,贾进华,刘永福,张丽娟,张鹏飞. 2006. 塔里木盆地古近纪岩相古地理. 古地理学报, 8(3): 353-364. [Shao L Y,He Z P,Gu J Y,Luo W L,Jia J H,Liu Y F,Zhang L J,Zhang P F.2006. Lithofacies palaeogeography of the Paleogene in Tarim Basin. Journal of Palaeogeography(Chinese Edition), 8(3): 353-364] [25] 宋金鹏,田盼盼,代俊杰,杨连刚,戴瑞瑞,郭喜阳. 2021. 塔里木盆地库车坳陷膏盐岩分布特征及油气地质意义. 断块油气田, 28(6): 800-804. [Song J P,Tian P P,Dai J J,Yang L G,Dai R R,Guo X Y.2021. Distribution characteristics of gypsum-salt rock and petroleum geological significance in Kuqa Depression of Tarim Basin. Fault-Block Oil & Gas Field, 28(6): 800-804] [26] 苏新,郭宪璞,丁孝忠. 2003. 塔里木北部库车前陆盆地晚白垩世和古新世的钙质超微化石组合. 现代地质, 17(4): 370-377. [Su X,Guo X P,Ding X Z.2003. Late Cretaceous and Paleocene calcareous nannofossil assemblages from Kuqa foreland Basin in the northern Tarim Basin. Geoscience, 17(4): 370-377] [27] 孙宏伟. 2014. 新疆莎车盆地上白垩统—古近系蒸发岩沉积特征及其找钾指示意义. 中国地质大学(北京)硕士学位论文. [Sun H W.2014. Sedimentary characteristics of Upper Cretaceous-Paleogene evaporite in Shache Basin,Xinjiang and its indicative significance for potassium prospecting. Masteral dissertation of China University of Geosciences] [28] 谭红兵,于升松. 1999. 我国湖泊沉积环境演变研究中元素地球化学的应用现状及发展方向. 盐湖研究, 7(3): 58-65. [Tan H B,Yu S S.1999. Present situation and future development of elemental geochemistry in the study of lake sediments' evolution. Journal of Salt Lake Research, 7(3): 58-65] [29] 谭红兵,马海州,许建新,肖应凯,王建国,李廷伟. 2005. 塔里木盆地西部古盐岩同位素地球化学与成钾预测研究. 地球学报,26(B09): 174-179. [Tan H B,Ma H Z,Xu J X,Xiao Y K,Wang J G,Li T W.2005. Isotope geochemistry of ancient salt rocks and prognosis of sylvinite deposits in western Tarim Basin. Acta Geoscientica Sinica,26(B09): 174-179] [30] 唐天福. 1989. 新疆塔里木盆地西部白垩纪至早第三纪海相地层及含油性. 北京: 科学出版社. [Tang T F.1989. Cretaceous-Paleogene Marine Strata and Oil-bearing in Western Tarim Basin,Xinjiang. Beijing: Science Press] [31] 田军,杨海军,吴超,莫涛,朱文慧,史玲玲. 2020. 博孜9井的发现与塔里木盆地超深层天然气勘探潜力. 天然气工业, 40(1): 11-19. [Tian J,Yang H J,Wu C,Mo T,Zhu W H,Shi L L.2020. Discovery of Well Bozi 9 and ultra-deep natural gas exploration potential in the Kelasu tectonic zone of the Tarim Basin. Natural Gas Industry, 40(1): 11-19] [32] 王得林. 2000. 新疆古近纪和新近纪古地理. 新疆地质, 18(4): 352-356. [Wang D L.2000. Palaeogeography of the Paleoneogone in Xinjiang. Xinjiang Geology, 18(4): 352-356] [33] 王凡,邓小林,郑绵平,韦钊,王淑丽,赵玉海,刘星旺,王占文. 2022. 新疆库车坳陷西段膏盐层沉积、地球化学特征及找钾方向. 地球科学,47(1): 56-71. [Wang F,Deng X L,Zheng M P,Wei Z,Wang S L,Zhao Y H,Liu X W,Wang Z W.2022. Sedimentary-geochemical characteristics and potash-prospecting potential of gypsum-salt layer in western Kuqa Depression. Earth Science,47(1): 56-71] [34] 王淑丽,郑绵平,王永明,王凡,王英林,张震,吴静依,李洪普. 2019. 中国盐湖地球化学发展历程与研究进展. 科学技术与工程, 19(9): 1-9. [Wang S L,Zheng M P,Wang Y M,Wang F,Wang Y L,Zhang Z,Wu J Y,Li H P.2019. Advances and development history of geochemistry on salt lakes in China. Science Technology and Engineering, 19(9): 1-9] [35] 王兴元,尹宏伟,邓小林,韦钊. 2015. 库车坳陷新生代盐岩锶同位素特征及物质来源分析. 南京大学学报(自然科学), 51(5): 1068-1074. [Wang X Y,Yin H W,Deng X L,Wei Z.2015. Strontium isotope characteristics and the origin of Cenozoic salt deposits in Kuqa Depression. Journal of Nanjing University(Natural Science), 51(5): 1068-1074] [36] 王招明. 2004. 库车前陆盆地露头区油气地质. 北京: 石油工业出版社. [Wang Z M.2004. Petroleum Geology in Outcrop Area of Kuqa Foreland Basin. Beijing: Petroleum Industry Press] [37] 王招明,谢会文,李勇,雷刚林,吴超,杨宪彰,马玉杰,能源. 2013. 库车前陆冲断带深层盐下大气田的勘探和发现. 中国石油勘探, 18(3): 1-11. [Wang Z M,Xie H W,Li Y,Lei G L,Wu C,Yang X Z,Ma Y J,Neng Y.2013. Exploration and discovery of large and deep subsalt gas fields in kuqa foreland thrust belt. China Petroleum Exploration, 18(3): 1-11] [38] 许丽,李江海,王洪浩,黄少英,能源. 2016. 库车坳陷大北地区古近纪沉积特征及盐湖演化. 特种油气藏, 23(5): 56-61. [Xu L,Li J H,Wang H H,Huang S Y,Neng Y.2016. Paleogene sedimentary properties and salt lake evolution in Dabei of Kuqa Depression. Special Oil & Gas Reservoirs, 23(5): 56-61] [39] 徐洋,曹养同,刘成林,焦鹏程. 2018. 库车盆地始新世盐湖物源及蒸发浓缩程度研究. 地质学报, 92(8): 1617-1629. [Xu Y,Cao Y T,Liu C L,Jiao P C.2018. Provenance and degree of evaporation and concentration of Eocene salt lake in the Kuqa Basin. Acta Geologica Sinica, 92(8): 1617-1629] [40] 徐洋,刘成林,曹养同. 2021. 新疆库车盆地中始新世成盐演化特征: 以KL4钻孔为例. 地质学报, 95(7): 2183-2192. [Xu Y,Liu C L,Cao Y T.2021. Salt-forming evolution characteristics of Middle Eocene in the Kuqa Basin,Xinjiang: A case study of borehole KL4. Acta Geologica Sinica, 95(7): 2183-2192] [41] 雍天寿,单金榜. 1986. 白垩纪及早第三纪塔里木海湾的形成与发展. 沉积学报, 04(3): 67-75. [Yong T S,Shan J B.1986. The development and formation in the Tarim Bay in Cretaceous-Paleogene ages. Acta Sedimentologica Sinica, 04(3): 67-75] [42] 岳乐平,邱占祥,颉光普,邱铸鼎,张莉,张云翔,Heller F.2003. 兰州盆地永登剖面记录的第三纪沉积环境. 沉积学报, 21(4): 683-687. [Yue L P,Qiu Z X,Xie G P,Qiu Z D,Zhang L,Zhang Y X,F H.2003. Sedimentary environment of Tertiary recorded in the Yongdeng section of Lanzhou Basin. Acta Sedimentologica Sinica, 21(4): 683-687] [43] 张朝军,田在艺. 1998. 塔里木盆地库车坳陷第三系盐构造与油气. 石油学报, 19(1): 6-10. [Zhang C J,Tian Z Y.1998. Tertiary salt structures and hydrocarbons in Kuqa Depression of Tarim Basin. Acta Petrolei Sinica, 19(1): 6-10] [44] 张华,刘成林,曹养同,孙宏伟,王立成. 2013. 塔里木古海湾新生代海退时限及方式的初步探讨. 地球学报, 34(5): 577-584. [Zhang H,Liu C L,Cao Y T,Sun H W,Wang L C.2013. A tentative discussion on the time and the way of marine regression from Tarim Bay during the Cenozoic. Acta Geoscientica Sinica, 34(5): 577-584] [45] 张涛. 2014. 天山南麓库车坳陷新生代高精度磁性地层与构造演化. 兰州大学博士学位论文. [Zhang T.2014. Cenozoic high-precision magnetic strata and tectonic evolution in Kuqa Depression at the southern foot of Tianshan Mountains. Doctoral dissertation of Lanzhou University] [46] 张勇刚,吕福亮,范国章,王彬,李丽,李东,邵大力,杨姣. 2012. 盐相关盆地油气地质特征及其勘探认识: 以红海盆地为例. 盐湖研究, 20(1): 9-15. [Zhang Y G,Lü F L,Fan G Z,Wang B,Li L,Li D,Shao D L,Yang J.2012. Salt-related basin hydrocarbon geology characteristics and exploration recognition: a case study of Red Sea basin. Journal of Salt Lake Research, 20(1): 9-15] [47] 张一勇. 1995. 中国早第三纪孢粉植物群纲要. 古生物学报, 34(2): 212-227. [Zhang Y Y.1995. Outline of palaeogene palynofloras of China. Acta Palaeontologica Sinica, 34(2): 212-227] [48] 张一勇,詹家祯. 1991. 新疆塔里木盆地西部晚白垩世至早第三纪孢粉. 北京: 科学出版社. [Zhang Y Y,Zhan J Z. 1991. Sporopollen from Late Cretaceous to Early Tertiary in Western Tarim Basin,Xinjiang. Beijing: Science Press] [49] 章振国,高继雷,张向文. 2010. 塔里木盆地古代蒸发岩硫同位素地球化学研究. 甘肃地质, 19(1): 32-37. [Zhang Z G,Gao J L,Zhang X W.2010. Geochemistry of sulfur isotope of paleo-evaporites in Tarim Basin. Gansu Geology, 19(1): 32-37] [50] 张志亮,沈忠悦,汪新,唐鹏程,余养里,赵博,潘小青,石林权. 2013. 库车坳陷克拉苏河新生代沉积岩磁组构特征与古流向分析. 地球物理学报, 56(2): 567-578. [Zhang Z L,Shen Z Y,Wang X,Tang P C,Yu Y L,Zhao B,Pan X Q,Shi L Q.2013. Characteristics of magnetic fabrics and paleocurrent directions of Cenozoic sediments in the Kelasu River,Kuqa Depression. Chinese Journal of Geophysics, 56(2): 567-578] [51] 郑民,孟自芳. 2006. 新疆拜城古近系磁性地层划分. 沉积学报,(5): 650-656. [Zheng M,Meng Z F.2006. Magnetostratigraphy of tertiary system in Baicheng,Xinjiang. Acta Sedimentologica Sinica, 24(5): 650-656] [52] 郑绵平,袁鹤然,张永生,刘喜方,陈文西,李金锁. 2010. 中国钾盐区域分布与找钾远景. 地质学报, 84(11): 1523-1553. [Zheng M P,Yuan H R,Zhang Y S,Liu X F,Chen W X,Li J S.2010. Regional distribution and prospects of potash in China. Acta Geologica Sinica, 84(11): 1523-1553] [53] 钟逸斯,王立成,董浩伟. 2022. 蒸发岩沉积特征及环境综述. 沉积学报, 40(5): 1188-1214. [Zhong Y S,Wang L C,Dong H W.2022. Evaporite sedimentary characteristics and environment: a review. Acta Sedimentologica Sinica, 40(5): 1188-1214] [54] 祝幼华,赵媛媛,钟石兰. 2012. 塔里木盆地库车坳陷小库孜拜剖面古近纪钙质超微化石. 古生物学报, 51(3): 328-333. [Zhu Y H,Zhao Y Y,Zhong S L.2012. Palaeogene calcareous nannofossils from the Xiaokuzibai section of the Kuqa Depression,Tarim Basin. Acta Palaeontologica Sinica, 51(3): 328-333] [55] 卓勤功,李勇,宋岩,杨宪彰,赵孟军,方世虎,柳少波,鲁雪松. 2013. 塔里木盆地库车坳陷克拉苏构造带古近系膏盐岩盖层演化与圈闭有效性. 石油实验地质, 35(1): 42-47. [Zhuo Q G,Li Y,Song Y,Yang X Z,Zhao M J,Fang S H,Liu S B,Lu X S.2013. Evolution of Paleogene saline deposits and effectiveness of traps in Kelasu tectonic zone,Kuqa Depression,Tarim Basin. Petroleum Geology & Experiment, 35(1): 42-47] [56] Fan X J,Lu Y C,Zhang J Y,Wu S Q,Zhang L A,Du X J,Cui Q Y,Wang H.2022. Lithofacies characteristics,depositional environment and sequence stratigraphic framework in the saline lacustrine basin: a case study of the Eocene low member of Xingouzui Formation,Jianghan Basin,China. Energies, 15: 6235. [57] Fang X M,Fang Y H,Zan J B,Zhang W L,Song C H,Appel E,Meng Q Q,Miao Y F,Dai S,Lu Y,Zhang T.2019. Cenozoic magnetostratigraphy of the Xining Basin,NE Tibetan Plateau,and its constraints on paleontological,sedimentological and tectonomorphological evolution. Earth-Science Reviews, 190: 460-485. [58] Hardie L,Smoot J,Eugster H.1978. Saline Lakes and their deposits: A sedimentological approach. Modern and ancient lake sediments,7-41. [59] Hyland E G,Huntington K W,Sheldon N D,Reichgelt T.2018. Temperature seasonality in the North American continental interior during the Early Eocene Climatic Optimum. Climate of the Past, 14: 1391-1404. [60] Lauretano V,Littler K,Polling M,Zachos J C,Lourens L J.2015. Frequency,magnitude and character of hyperthermal events at the onset of the Early Eocene climatic optimum. Clim Past, 11: 1313-1324. [61] Miller K G,Browning J V,Schmelz W J,Kopp R E,Mountain G S,Wright J D.2020. Cenozoic Sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances, 6: eaaz1346. [62] Qin P,Zhong D K,Su C,Yang X Z,Sun H T,Zhang H,Song L,Yang Y,Wang H X.2023. A unique saline lake sequence in the eastern Tethyan Ocean in responses to the Palaeocene-Eocene thermal maximum: a case study in the Kuqa Depression,Tarim Basin,NW China. Journal of Asian Earth Sciences, 250: 105594. [63] Van Dijk J,Fernandez A,Bernasconi S M,Caves Rugenstein J K,Passey S R,White T.2020. Spatial pattern of super-greenhouse warmth controlled by elevated specific humidity. Nature Geoscience, 13: 739-744. [64] Warren J.2016. Evaporites: a Geological Compendium. Springer: 408-413. [65] Westerhold T,Röhl U,Donner B,Zachos J C.2018. Global extent of early Eocene hyperthermal events: a new Pacific benthic foraminiferal isotope record from shatsky rise(ODP site 1209). Paleoceanog and Paleoclimatol, 33: 626-642. [66] Xu Y,Cao Y T,Liu C L,Zhang H,Nie X.2020. The history of transgressions during the Late Paleocene-Early Eocene in the Kuqa depression,Tarim Basin: Constraints from C-O-S-Sr isotopic geochemistry. Minerals, 10: 834. [67] Zachos J,Pagani M,Sloan L,Thomas E,Billups K.2001. Trends,Rhythms,and Aberrations in Global Climate 65 Ma to Present. Science, 292: 686-693. [68] Zachos C,Dickens R,Zeebe E.2008. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279-283. [69] Zhang Z L,Shen Z Y,Sun J M,Wang X,Tian Z H,Pan X Q,Shi L Q.2015. Magnetostratigraphy of the Kelasu section in the Baicheng Depression,Southern Tian Shan,Northwestern China. Journal of Asian Earth Sciences, 111: 492-504. [70] Zuo X C,Li C L,Zhang J L,Ma G Y,Chen P P.2020. Geochemical characteristics and depositional environment of the Shahejie Formation in the Binnan Oilfield,China. Journal of Geophysics and Engineering, 17: 539-551.