Discovery and geological significance of large landslide bodies using borehole image logs in the Longmaxi Formation of Da'an area, southern Sichuan Basin,China
PAN Feng1,2, JIANG Yuqiang1, JIANG Liwei3,4,5, WANG Yue2
1 School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China; 2 SLB Chengdu,Chengdu 610500,China; 3 State Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249,China; 4 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 5 PetroChina Zhejiang Oilfield Company,Hangzhou 310023,China
Abstract:Large landslide bodies are discovered for the first time in the Longmaxi Formation from the Da'an area,southern Sichuan basin,based on high-resolution borehole image well logs. Landslide bodies are distributed in the Long12 Sub-member and Long2 Member. They are both composed of black shales,and thus display similar features to background shale deposits on conventional logs. On borehole image logs,however,the landslide bodies can be identified by slide and slump structures,which have sharp contrasts with normal shale. Multi-layered landslide bodies are found in 6 drilling wells distributed in the Da'an area(~1000 km2). The landslide bodies are layered and separated by normal shales. The number of layers and thickness of landslide bodies in different wells are markedly different,making it challenging to correlate between wells. The landslide bodies are overall thick in the north and thin in the south. A single landslide body varies in thickness from 0.5 to 32.4 m,while composite landslide bodies in a single well can reach a thickness of 41 to 194.5 m. It is believed that landslide bodies are widely distributed,occur at multiple stratigraphic levels with large bed thickness,and have the characteristics of earthquake origin. They were the product of short distance transportation and rapid deposition,which was controlled by the southeast slope of the Leshan-Longnvsi palaeo-uplift. Different areas have different sedimentary responses to the same earthquake event. A single landslide body may be a response to one earthquake event,or it may be the result of the superposition of multiple earthquake events. The discovery of the landslide bodies provides a new perspective on stratigraphic correlation of the Longmaxi Formation in the southern Sichuan Basin. At the same time,the landslide bodies are thick with well-developed fracture networks,and feature favorable reservoir and seal conditions. These landslide bodies may thus represent potentially important prospects for the future shale gas exploration.
PAN Feng,JIANG Yuqiang,JIANG Liwei et al. Discovery and geological significance of large landslide bodies using borehole image logs in the Longmaxi Formation of Da'an area, southern Sichuan Basin,China[J]. JOPC, 2024, 26(4): 972-984.
[1] 包汉勇,孟志勇,李凯,常振,郁飞,易雨昊,赵天逸. 2023. 四川盆地涪陵地区龙马溪组含气页岩段上部气层平面非均质性特征及其发育主控因素. 地球科学, 48(7): 2750-2763. [Bao H Y,Meng Z Y,Li K,Chang Z,Yu F,Yi Y H,Zhao T Y.2023. Plane heterogeneity characteristics and main controlling factors of development of upper gas layer in gas-bearing shale of longmaxi formation in Fuling Area,Sichuan Basin. Earth Science, 48(7): 2750-2763] [2] 崔明明,彭楠,柳永清,王宗秀,旷红伟,许克民,李春麟. 2023. 陆相湖盆沉积物滑塌变形研究进展. 地质论评, 69(2): 701-718. [Cui M M,Peng N,Liu Y Q,Wang Z X,Kuang H W,Xu K M,Li C L.2023. Research progress on deformation structures of slump deposits in continental lacustrine basin. Geological Review, 69(2): 701-718] [3] 郭旭升,胡东风,魏祥峰,李宇平. 2016. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响. 石油与天然气地质, 37(6): 799-808. [Guo X S,Hu D F,Wei X F,Li Y P.2016. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba Area,the Sichuan Basin. Oil & Gas Geology, 37(6): 799-808] [4] 赖锦,李红斌,张梅,白梅梅,赵仪迪,范旗轩,庞小娇,王贵文. 2023. 非常规油气时代测井地质学研究进展. 古地理学报, 25(5): 1118-1138. [Lai J,Li H B,Zhang M,Bai M M,Zhao Y D,Fan Q X,Pang X J,Wang G W.2023. Advances in well logging geology in the era of unconventional hydrocarbon resources. Journal of Palaeogeography(Chinese Edition), 25(5): 1118-1138] [5] 李磊,王英民,张莲美,白广臣,王小刚. 2010. 块体搬运复合体的识别、演化及其油气勘探意义. 沉积学报, 28(1): 76-82. [Li L,Wang Y M,Zhang L M,Bai G C,Wang X G.2010. Identification and evolution of mass transport complexes and its significance for oil and gas exploration. Acta Sedimentologica Sinica, 28(1): 76-82] [6] 李相博,王菁,廖建波,龙礼文,潘树新,李智勇,完颜容. 2015. 陆相盆地深水沉积中的块体搬运作用与搬运机理研究: 以鄂尔多斯盆地延长组为例. 天然气地球科学, 26(4): 625-633. [Li X B,Wang J,Liao J B,Long L W,Pan S X,Li Z Y,Wanyan R.2015. The Mechanism of Transport of Deep-water Sedimentation in Lacustrine Basin: A Case Study of Deep-water Sandstone in Yanchang Formation,Ordos Basin. Natural Gas Geoscience, 26(4): 625-633] [7] 牟传龙,王秀平,王启宇,周恳恳,梁薇,葛祥英,陈小炜. 2016. 川南及邻区下志留统龙马溪组下段沉积相与页岩气地质条件的关系. 古地理学报, 18(3): 457-472. [Mou C L,Wang X P,Wang Q Y,Zhou K K,Liang W,Ge X Y,Chen X W.2016. Relationship between sedimentary facies and shale gas geological conditions of the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its adjacent areas. Journal of Palaeogeography(Chinese Edition), 18(3): 457-472] [8] 潘树新,郑荣才,卫平生,王天奇,陈彬滔,梁苏娟. 2013. 陆相湖盆块体搬运体的沉积特征、识别标志与形成机制. 岩性油气藏, 25(2): 9-18. [Pan S X,Zheng R C,Wei P S,Wang T Q,Chen B T,Liang S J.2013. Deposition characteristics,recognition mark and form mechanism of mass transport deposits in terrestrial lake Basin. Lithologic Reservoirs, 25(2): 9-18] [9] 蒲泊伶,董大忠,王凤琴,王玉满,黄金亮. 2020. 沉积相带对川南龙马溪组页岩气富集的影响. 中国地质, 47(1): 111-120. [Pu B L,Dong D Z,Wang F Q,Wang Y M,Huang J L.2020. The effect of sedimentary facies on Longmaxi shale gas in southern Sichuan Basin. Geology in China, 47(1): 111-120] [10] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 2020. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法. 地球科学进展, 35(6): 632-642. [Qin L,Mao J X,Ni F L,Xu S H,Li X G,Cai C E,Shang W L,Liu J K.2020. A brief introduction to deep-water mass-transport complexes: Structures,genetic classifications and identification methods. Advances in Earth Science, 35(6): 632-642] [11] 秦雁群,万仑坤,计智锋,李富恒,徐海龙,巴丹. 2018. 深水块体搬运沉积体系研究进展. 石油与天然气地质, 39(1): 140-152. [Qin Y Q,Wan L K,Ji Z F,Li F H,Xu H L,Badan.2018. Progress of research on deep-water mass-transport deposits. Oil & Gas Geology, 39(1): 140-152] [12] Shanmugam G.2013. 深水砂体成因研究新进展. 石油勘探与开发, 40(3): 294-301. [Shanmugam G.2013. New perspectives on deep-water sandstones: implications. Petroleum Exploration and Development, 40(3): 294-301] [13] 施振生,王红岩,林长木,孙莎莎,金惠,郝翠果,陈胜,张蓉. 2020. 威远—自贡地区五峰期—龙马溪期古地形及其对页岩储层品质的控制. 地层学杂志, 44(2): 163-173. [Shi Z S,Wang H Y,Lin C M,Sun S S,Jin H,Hao C G,Chen S,Zhang R.2020. Paleotopography of Weiyuan-Zigong area in Wufengian-Lungmachian stages(Ordovician-Silurian transition)and its effect on the quality of shale gas reservoir. Journal of Stratigraphy, 44(2): 163-173] [14] 施振生,袁渊,赵群,孙莎莎,周天琪,程峰. 2022. 川南地区五峰组—龙马溪组沉积期古地貌及含气页岩特征. 天然气地球科学, 33(12): 1969-1985. [Shi Z S,Yuan Y,Zhao Q,Sun S S,Zhou T Q,Chen F.2022. Paleogeomorphology and oil-bearing shale characteristics of the Wufeng-Longmaxi shale in southern Sichuan Basin,China. Natural Gas Geoscience, 33(12): 1969-1985] [15] 舒红林,何方雨,李季林,张介辉,李明隆,芮昀,邹辰,姚秋昌,梅珏,李延钧. 2023. 四川盆地大安区块五峰组—龙马溪组深层页岩地质特征与勘探有利区. 天然气工业, 43(6): 30-43. [Shu H L,He F Y,Li J L,Zhang J H,Li M L,Rui Y,Zou C,Yao Q C,Mei J,Li Y J.2023. Geological characteristics and favorable exploration areas of Wufeng Formation-Longmaxi Formation deep shale in the Da'an Block,Sichuan Basin. Natural Gas Industry, 43(6): 30-43] [16] 宋晓帅,孙志文,朱超祁,范智涵,朱娜,贾永刚,于开宁. 2022. 深海滑坡研究进展. 海洋地质与第四纪地质, 42(1): 222-235. [Song X S,Sun Z W,Zhu C Q,Fan Z H,Zhu N,Jia Y G,Yu K N.2022. A review on deepwater landslide. Marine Geology & Quaternary Geology, 42(1): 222-235] [17] 王红岩,施振生,孙莎莎,赵群,周天琪,程峰,拜文华. 2023. 陆表海页岩沉积微相类型及微相分布模式: 以川南地区五峰组—龙马溪组为例. 石油勘探与开发, 50(1): 51-64. [Wang H Y,Shi Z S,Sun S S,Zhao Q,Zhou T Q,Cheng F,Bai W H.2023. Microfacies types and distribution of epicontinental shale: a case study of the Wufeng-Longmaxi shale in southern Sichuan Basin,China. Petroleum Exploration and Development, 50(1): 51-64] [18] 吴庆岩,张爱军(译). 1998. 测井解释常用岩石矿物手册. 北京: 石油工业出版社,37-43. [Wu Q Y,Zhang A J(Translating). 1998. Handbook for Well Log Interpretation. Beijing: Petroleum Industry Press,37-43] [19] 于吉星,杨田,田景春,蔡来星,任启强,郭为雪. 2023. 深水重力流沉积油气勘探中的几个基础沉积学问题与研究展望. 古地理学报, 25(6): 1299-1314. [Yu J X,Yang T,Tian J C,Cai L X,Ren Q Q,Guo W X.2023. Some basic sedimentological problems and research prospects of deep-water gravity-flow sediment in oil and gas exploration. Journal of Palaeogeography(Chinese Edition), 25(6): 1299-1314] [20] 袁效奇,苏德辰,贺静,孙爱萍,吕洪波,李海兵,乔秀夫. 2014. 鄂尔多斯南缘中奥陶统中的滑塌构造及其地震成因. 地质论评, 60(3): 529-540. [Yuan X Q,Su D C,He J,Lü H B,Li H B,Qiao X F.2014. The Slump Structures in the Middle Ordovician on the Southern Margin of Ordos Basin and Their Seismic Origin. Geological Review, 60(3): 529-540] [21] 曾联波,马诗杰,田鹤,薛萌,刘国平,吕文雅. 2023. 富有机质页岩天然裂缝研究进展. 地球科学, 48(7): 2427-2442. [Zeng L B,Ma S J,Tian H,Xue M,Liu G P,Lü W Y.2023. Research progress of natural fractures in organic rich shale. Earth Science, 48(7): 2427-2442] [22] 张云山,吴南,贾永刚,尉建功. 2023. 海底滑坡典型特征及石油地质学意义. 海洋地质与第四纪地质, 43(1): 94-104. [Zhang Y S,Wu N,Jia Y G,Wei J G.2023. Characteristics of submarine landslides and their implications for petroleum geology. Marine Geology & Quaternary Geology, 43(1): 94-104] [23] 赵迪斐,郭英海,杨玉娟,王守玉,毛潇潇,李咪. 2016. 渝东南下志留统龙马溪组页岩储集层成岩作用及其对孔隙发育的影响. 古地理学报, 18(5): 843-856. [Zhao D F,Guo Y H,Yang Y J,Wang S Y,Mao X X,Li M.2016. Shale reservoir diagenesis and its impacts on pores of the Lower Silurian Longmaxi Formation in southeastern Chongqing. Journal of Palaeogeography(Chinese Edition), 18(5): 843-856] [24] 赵文智,李建忠,杨涛,王淑芳,黄金亮. 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, 43(4): 499-510. [Zhao W Z,Li J Z,Yang T,Wang S F,Huang J L.2016. Geological difference and its significance of marine shale gases in South China. Petroleum Exploration and Development, 43(4): 499-510] [25] 郑和荣,高波,彭勇民,聂海宽,杨斐然. 2013. 中上扬子地区下志留统沉积演化与页岩气勘探方向. 古地理学报, 15(5): 645-656. [Zheng H R,Gao B,Peng Y M,Nie H K,Yang F R.2013. Sedimentary evolution and shale gas exploration direction of the Lower Silurian in Middle-Upper Yangtze area. Journal of Palaeogeography(Chinese Edition), 15(5): 645-656] [26] 钟广法,马在田. 2001. 利用高分辨率成像测井技术识别沉积构造. 同济大学学报(自然科学版), 29(5): 576-580. [Zhong G F,Ma Z T.2001. Sedimentary structures identified from high-resolution borehole micro-resistivity image logs. Journal of Tongji University(Natura Science), 29(5): 576-580] [27] 钟广法,游倩. 2012. 高分辨率FMS成像测井资料在科学大洋钻探中的应用. 地球科学进展, 27(3): 347-358. [Zhong G F,You Q.2012. Applications of high-resolution formation microscanner image logs to scientific ocean drilling. Advances in Earth Science, 27(3): 347-358] [28] 周伦先. 2008. 成像测井技术在研究砂砾岩沉积构造中的应用. 新疆石油地质, 29(5): 654-656,667. [Zhou L X.2008. Application of fullbore formation MicroImager(FMI)to study of glutenite sedimentary structures in Jiyang depression. Xinjiang Petroleum Geology, 29(5): 654-656,667] [29] Alsop G I,Marco S,Weinberger R,Levi T.2016. Sedimentary and structural controls on seismogenic slumping within mass transport deposits from the Dead Sea Basin. Sedimentary Geology, 344: 71-90. [30] Alsop G I,Marco S.2011. Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. Journal of Structural Geology, 33(4): 433-457. [31] Bose P K,Chaudhuri A K,Seth A.1988. Facies,flow and bedform patterns across a storm-dominated inner continental shelf: Proterozoic Kaimur Formation,Rajasthan,India. Sedimentary Geology, 59(3-4): 275-293. [32] Cardona S,Wood L J,Dugan B,Jobe Z,Strachan L J.2020. Characterization of the Rapanui mass-transport deposit and the basal shear zone: Mount Messenger Formation,Taranaki Basin,New Zealand. Sedimentology, 67(4): 2111-2148. [33] Elger J,Berndt C,Rüpke L,Krastel S,Gross F,Geissler W H.2018. Submarine slope failures due to pipe structure formation. Nature Communications, 9(1): 1-6. [34] Kneller B,Dykstra M,Fairweather L,Milana J P.2016. Mass-transport and slope accommodation: implications for turbidite sandstone reservoirs. AAPG Bulletin, 100(2): 213-235. [35] Li W J,Chen J T,Hakim A J,Myrow P M.2022. Middle Ordovician mass-transport deposits from western Inner Mongolia,China: mechanisms and implications for basin evolution. Sedimentology, 69(3): 1301-1338. [36] Minisini D,Desjardins P,Otharán G,Paz M,Kietzmann D A,Eberli G,Zavala C,Simo T,MacQuaker J H,Heine C,Minisini D,Fantin M,Noguera I L,Leanza H A.2020. Sedimentology,depositional model,and implications for reservoir quality. AAPG Memoir, 121: 201-236. [37] Rider M.2002. The Geological Interpretation of Well Logs. Schlumberger,199-223. [38] Varnes D J.1978. Slope movement types and processes. In: Schuster R L,Krizek R J(eds). Landslides: Analysis and Control. National Academy Sciences,11-33. [39] Weimer P,Slatt R M,Bouroullec R,Fillon R,Pettingill H,Pranter M,Tari G.2006. Introduction to the petroleum geology of deepwater setting. AAPG Studies in Geology, 57: 149-170.