Sedimentary characteristics of lobes formed by interacting bottom currents and gravity flows: a case study from the Miocene in Rovuma Basin,East Africa
LIU Yuxing1,2,3,4, CHEN Yuhang1,2,3,4, FAN Guozhang5, LI Lin5, LU Yintao5, ZUO Guoping5, CAO Quanbin5, DING Qunfeng1,2,3
1 School of Earth Sciences and Engineering,Xi'an Shiyou University,Xi'an 710065,China; 2 Shaanxi Key Laboratory of Petroleum Accumulation Geology,Xi'an Shiyou University,Xi'an 710065,China; 3 Key Laboratory of Submarine Geosciences,Ministry of Natural Resources,Hangzhou 310012,China; 4 Xi'an Key Laboratory of Tight Oil(Shale Oil)Development,Xi'an Shiyou University,Xi'an 710065,China; 5 PetroChina Hangzhou Institute of Geology,Hangzhou 310023,China
Abstract:The interplay of bottom currents and gravity flows is an important deep-water sedimentary process,which plays an important role in redistributing submarine sediments and reshaping seafloor bedforms. At present,research on bottom currents and gravity flows interaction in deep-water channels is relatively mature,but little work has been done on the sedimentary characteristics of lobes influenced by bottom currents. Based on an integrated study of seismic facies and seismic attributes using 3D seismic and logging data,this study documents the distribution and lithological characteristics of the Miocene lobes in the Rovuma Basin(East Africa). The effect of bottom currents and gravity flows interaction on lobe sedimentation is revealed through quantitative restoration of gravity flow velocity,combined with regional ocean current data analysis. The results indicate that,early channels migrated southward due to the northward-directed bottom current,and their northern levees are well developed with a negative terrain present to the south of the channels,which led subsequent lobes to deposit to the south of these channels. Deposition of the lobes is influenced by bottom current flow direction and gravity flows forming the lobes. Velocity of the gravity flows is much higher than that of the bottom currents. Therefore,when the directions of bottom currents and the lobe propogation are opposite and oblique,the influence of bottom currents is suppressed on the side against bottom current flow direction(south side),and the lobe gradually thins from the axis to the margin,accompanied by increasing mud content;On the side downstream of bottom current flow direction(north side),gravity flows intersect obliquely with bottom currents,and the mud at the top of turbidity currents is stripped off by the bottom current,leaving sand deposited in the lobe. When bottom current flow direction and lobe propogration direction are close to orthogonal,the influence of bottom current on the lobe is consistent on the whole,and the mud at the top of gravity flows is stripped. Therefore,the lobe is mainly composed of thick sandy deposits at the side against the bottom current flow direction,and the sand content decreases towards the side downstream of the bottom current,accompanied by an increasing mud content.
LIU Yuxing,CHEN Yuhang,FAN Guozhang et al. Sedimentary characteristics of lobes formed by interacting bottom currents and gravity flows: a case study from the Miocene in Rovuma Basin,East Africa[J]. JOPC, 2024, 26(4): 1005-1016.
[1] 陈宇航,姚根顺,吕福亮,邵大力,鲁银涛,孙辉. 2020. 东非陆缘深水沉积演化及控制因素: 以鲁伍马盆地为例. 北京: 地质出版社,108-115. [Chen Y H,Yao G S,Lü F L,Shao D L,Lu Y T,Sun H.2020. Evolution and Controlling Factors of Deep-water Sediments in the Continental Margin of East African: A Case Study of Rovuma Basin. Beijing: Geological Publishing House,108-115] [2] 陈宇航,姚根顺,邵大力,鲁银涛,吕福亮,曹全斌,唐鹏程,李仕芳. 2021. 坦桑尼亚滨海盆地陆坡峡谷沉积特征及其控制因素. 古地理学报, 23(6): 1158-1173. [Chen Y H,Yao G S,Shao D L,Lu Y T,Lü F L,Cao Q B,Tang P C,Li S F.2021. Sedimentary characteristics and its controlling factors of continental slope canyons in Tanzania Coastal Basin. Journal of Palaeogeography(Chinese Edition), 23(6): 1158-1173] [3] 龚承林,王英民. 2023. 深海重力流与底流交互作用. 北京: 科学出版社,1-5. [Gong C L,Wang Y M.2023. Interaction between Deep-sea Gravity Flow and Bottom Current. Beijing: Science Press,1-5] [4] 何幼斌,罗顺社,高振中. 2004. 内波、内潮汐沉积研究现状与进展. 江汉石油学院学报, 26(1): 5-10,141. [He Y B,Luo S S,Gao Z Z.2004. Current situation and advance of internal wave and internal tide deposit study. Journal of Jianghan Petroleum Institute, 26(1): 5-10,141] [5] 李冬,王英民,王永凤,徐强,王杰平. 2011. 琼东南盆地中央峡谷深水天然堤—溢岸沉积. 沉积学报, 29(4): 689-694. [Li D,Wang Y M,Wang Y F,Xu Q,Wang J P.2011 The sedimentary and foreground of prospect for levee-overbank in central canyon,Qiongdongnan Basin. Acta Sedimentologica Sinica, 29(4): 689-694] [6] 李华,王英民,徐强,卓海腾,吴嘉鹏,唐武,李冬,徐艳霞. 2014. 南海北部珠江口盆地重力流与等深流交互作用沉积特征、过程及沉积模式. 地质学报, 88(6): 1120-1129. [Li H,Wang Y M,Xu Q,Zhuo H T,Wu J P,Tang W,Li D,Xu Y X.2014. Interactions between down-slope and along-slope processes on the northern slope of South China Sea: products,processes,and depositional model. Acta Geologica Sinica, 88(6): 1120-1129] [7] 史卜庆,丁梁波,马宏霞,孙辉,张颖,许小勇,王红平,范国章. 2023. 东非海域大型深水沉积体系及油气成藏特征. 岩性油气藏, 35(6): 10-17. [Shi B Q,Ding L B,Ma H X,Sun H,Zhang Y,Xu X Y,Wang H P,Fan G Z.2023. Characteristics of hydrocarbon accumulation in deep-water depositional system in offshore East Africa. Lithologic Reservoirs, 35(6): 10-17] [8] 孙辉,吕福亮,范国章,刘少治,鲁银涛,陈宇航. 2017. 三级层序内受底流影响的富砂深水沉积演化规律: 以东非鲁武马盆地中中新统为例. 天然气地球科学, 28(1): 106-115. [Sun H,Lü F L,Fan G Z,Liu S Z,Lu Y T,Chen Y H.2017. Evolution of deepwater sand-rich sediments affected by bottom currents in the 3rd order sequences: a case study of Middle Miocene in the Ruvuma Basin. Natural Gas Geoscience, 28(1): 106-115] [9] 王玉柱,王海荣,高红芳,王志宏,郑良合,吕友生. 2010. 等深流作用机制和沉积的研究进展. 古地理学报, 12(2): 141-150. [Wang Y Z,Wang H R,Gao H F,Wang Z H,Zheng L H,Lü Y S.2010. Contour current dynamics process and deposits: a review. Journal of Palaeogeography(Chinese Edition), 12(2): 141-150] [10] 吴嘉鹏,王英民,王海荣,李华,彭学超,邱燕,李冬. 2012. 深水重力流与底流交互作用研究进展. 地质论评, 58(6): 1110-1120. [Wu J P,Wang Y M,Wang H R,Li H,Peng X C,Qiu Y,Li D.2012. The interaction between deep-water turbidity and bottom currents: a review. Geological Review, 58(6): 1110-1120] [11] 张光亚,刘小兵,温志新,王兆明,宋成鹏. 2015. 东非被动大陆边缘盆地构造: 沉积特征及其对大气田富集的控制作用. 中国石油勘探, 20(4): 71-80. [Zhang G Y,Liu X B,Wen Z X,Wang Z M,Song C P.2015. Structural and sedimentary characteristics of passive continental margin basins in East Africa and their effect on the formation of giant gas fields. China Petroleum Exploration, 20(4): 71-80] [12] 张兴阳,高振中,姚雪根. 1999. 北大西洋洛克尔海槽东北部内波沉积: 深水大型沉积物波成因的再解释. 沉积学报, 17(3): 464-472. [Zhang X Y,Gao Z Z,Yao X G.1999. Internal-wave deposits in the north-eastern Rockall Trough,North Atlantic Ocean: reinterpretation of deep-water sediment waves formation. Acta Sedimentologica Sinica, 17(3): 464-472] [13] Beaubouef R T.2004. Deep-water leveed-channel complexes of the Cerro Toro Formation,Upper Cretaceous,southern Chile. AAPG Bulletin, 88(11): 1471-1500. [14] Bowen A J,Normark W R,Piper D J W.1984. Modelling of turbidity currents on navy submarine fan,California continental borderland. Sedimentology, 31(2): 169-185. [15] Brackenridge R E,Hernández-Molina F J,Stow D A V,Llave E.2013. A Pliocene mixed contourite-turbidite system offshore the Algarve Margin,Gulf of Cadiz: seismic response,margin evolution and reservoir implications. Marine and Petroleum Geology, 46: 36-50. [16] Breitzke M,Wiles E,Krocker R,Watkeys M K,Jokat W.2017. Seafloor morphology in the Mozambique Channel: evidence for long-term persistent bottom-current flow and deep-reaching eddy activity. Marine Geophysical Research, 38: 241-269. [17] Chen Y H,Yao G S,Wang X F,Lü F L,Shao D L,Lu Y T,Cao Q B,Tang P C.2020. Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels: an example from the Oligocene channels in the Rovuma Basin,offshore Mozambique. Sedimentary Geology, 404: 105680. [18] de Ruijter W P M,Ridderinkhof H,Lutjeharms J R E,Schouten M W,Veth C.2002. Observations of the flow in the Mozambique Channel. Geophysical Research Letters, 29(10): 1502. [19] Fonnesu M,Palermo D,Galbiati M,Marchesini M,Bonamini E,Bendias D2020. A new world-class deep-water play-type,deposited by the syndepositional interaction of turbidity flows and bottom currents: the giant Eocene Coral Field in northern Mozambique. Marine and Petroleum Geology, 111: 179-201. [20] Fuhrmann A,Kane I A,Clare M A,Ferguson R A,Schomacker E,Bonamini E,Contreras F A.2020. Hybrid turbidite-drift channel complexes: an integrated multiscale model. Geology, 48(6): 562-568. [21] Gervais A,Savoye B,Mulder T,Gonthier E.2006. Sandy modern turbidite lobes: a new insight from high resolution seismic data. Marine and Petroleum Geology, 23(4): 485-502. [22] Gong C L,Wang Y M,Steel R J,Peakall J,Zhao X M,Sun Q L.2016. Flow processes and sedimentation in unidirectionally migrating deep-water channels: from a three-dimensional seismic perspective. Sedimentology, 63(3): 645-661. [23] Gong C L,Wang Y M,Rebesco M,Salon S,Steel R J.2018. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels?Geology, 46(6): 551-554. [24] Hernández-Molina F J,Llave E,Stow D A V,García M,Somoza L,Vázquez J T,Lobo F J,Maestro A,Díaz del Río V,León R,Medialdea T,Gardner J.2006. The contourite depositional system of the Gulf of Cádiz: a sedimentary model related to the bottom current activity of the Mediterranean outflow water and its interaction with the continental margin. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 53: 1420-1463. [25] Hernández-Molina F J,Paterlini M,Violante R,Marshall P,de Isasi M,Somoza L,Rebesco M.2009. Contourite depositional system on the Argentine Slope: an exceptional record of the influence of Antarctic water masses. Geology, 37(6): 507-510. [26] Kenyon N H.1986. Evidence from bedforms for a strong poleward current along the upper continental slope of northwest Europe. Marine Geology, 72(1-2): 187-198. [27] Kolla V,Posamentier H W,Wood L J.2007. Deep-water and fluvial sinuous channels: characteristics,similarities and dissimilarities,and modes of formation. Marine and Petroleum Geology, 24(6-9): 388-405. [28] Macgregor D.2018. History of the development of Permian-Cretaceous rifts in East Africa: a series of interpreted maps through time. Petroleum Geoscience, 24: 8-20. [29] Rebesco M,Stow D.2001. Seismic expression of contourites and related deposits: a preface. Marine Geophysical Researches, 22: 303-308. [30] Rebesco M,Hernández-Molina F J,Van Rooij D,WaHlin A.2014. Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Marine Geology, 352: 111-154. [31] Schlüter P,Uenzelmann-Neben G.2007. Seismostratigraphic analysis of the Transkei Basin: a history of deep sea current controlled sedimentation. Marine Geology, 240(1-4): 99-111. [32] Sequeiros O E.2012. Estimating turbidity current conditions from channel morphology: a Froude number approach. Journal of Geophysical Research: Oceans,117(C4): C04003. [33] Shanmugam G.2008. Chapter 5 deep-water bottom currents and their deposits. In: Rebesco M,Camerlenghi A(eds). Developments in Sedimentology. Amsterdam: Elsevier Science,59-81. [34] Shanmugam G.2014. Modern internal waves and internal tides along oceanic pycnoclines: challenges and implications for ancient deep-marine baroclinic sands: reply. AAPG Bulletin, 98(4): 858-879. [35] Stow D A V,Hernández-Molina F J,Llave E,Bruno M,García M,Díaz del Rio V,Somoza L,Brackenridge R E.2013. The Cadiz Contourite Channel: sandy contourites,bedforms and dynamic current interaction. Marine Geology, 343: 99-114. [36] van Aken H M,Ridderinkhof H,de Ruijter W P M. 2004. North Atlantic deep water in the south-western Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 51(6): 755-776. [37] Viana A R.2008. Chapter 23 economic relevance of contourites. In: Rebesco M,Camerlenghi A(eds). Developments in Sedimentology. Amsterdam: Elsevier Science,493-510.