Paleosalinity control on development of lacustrine shale: an example of shale from the lower submember of Member 3 of Paleogene Shahejie Formation,Dongying sag
HAI Qing1, LIANG Chao1,2, YANG Bo1, HAN Yu1, HAN Wanlu1
1 School of Geosciences,China University of Petroleum(East China),Shandong Qingdao 266580, China; 2 National Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China),Shandong Qingdao 266580, China
Abstract:The development of lacustrine high-quality hydrocarbon source rocks is often associated with lake salinization,but the impact of salinization on shale development remains unclear. In this paper,taking the Paleocene shale of the Dongying sag as an example,we analyze the changes in shale composition,laminae structure,and organic matter abundance across different salinity evolution stages. This is done by means of thin-section observation,XRD,pyrolysis test of rocks,2D elemental scanning of XRF,and trace elemental test,combined with organic geochemistry data and variations in elemental content. The results show that the shale within the depth range of 3120-3160 m in the lower submember of Member 3 of the Shahejie Formation of Well F42 can be divided into five lithofacies. The environmental evolution of the target section can be divided into five stages,which are controlled by factors such as climate and terrestrial input. During the deposition of the lower submember of Member 3 of the Shahejie Formation,the paleoclimate transitioned from warm and humid to relatively wet and cold,then to warm and humid,relatively dry and cold,and finally to relatively warm and humid. Terrestrial input showed multi-period cyclic changes. Characteristics of sedimentary environments varied among different lithofacies. High-salinity lakes had high nutrient concentration,high primary productivity,strong water stratification,and weak water circulation. The position of oxycline/halocline was relatively high,and the oxygen-rich zone was shallow,facilitating the rapid deposition of organic matter into reducing environments,which favored organic matter preservation. The carbonate mineral content was high and developed as laminae in stagnant water layers.
HAI Qing,LIANG Chao,YANG Bo et al. Paleosalinity control on development of lacustrine shale: an example of shale from the lower submember of Member 3 of Paleogene Shahejie Formation,Dongying sag[J]. JOPC, 2024, 26(5): 1140-1151.
[1] 操应长,梁超,韩豫,葸克来,王俊然,籍士超,梅俊芳. 2023. 基于物质来源及成因的细粒沉积岩分类方案探讨. 古地理学报, 25(4): 729-741. [Cao Y C,Liang C,Han Y,Xi K L,Wang J R,Ji S C,Mei J F.2023. Discussions on classification scheme for fine-grained sedimentary rocks based on sediments sources and genesis. Journal of Palaeogeography(Chinese Edition), 25(4): 729-741] [2] 曹婷婷,姚威,李志明,李政,黎茂稳. 2020. 渤海湾盆地沾化凹陷湖相泥页岩地球化学特征及有机质富集规律. 石油实验地质, 42(4): 558-564. [Cao T T,Yao W,Li Z M,Li Z,Li M W.2020. Geochemical characteristics of lacustrine shale and enrichment mechanism of organic matter in Zhanhua Sag,Bohai Bay Basin. Petroleum Geology & Experiment,42(4): 558-564] [3] 邓宏文,钱凯. 1993. 试论湖相泥质岩的地球化学二分性. 石油与天然气地质,14(2): 85-97. [Deng H W,Qian K.1993. Geochemical binary division character of lacustrine argillite. Oil & Gas Geology,14(2): 85-97] [4] 杜佰松,朱光有,刘舒飞,王业晗,于炳松,徐渴鑫. 2023. 浅析影响方解石生长和溶解的动力学因素及机制. 地学前缘,30(4): 335-351. [Du B S,Zhu G Y,Liu S F,Wang Y H,Yu B S,Xu K X.2023. Key factors and mechanisms affecting calcite growth and dissolution: a critical review. Earth Science Frontier,30(4): 335-351] [5] 龚德瑜,刘泽阳,何文军,周川闽,秦志军,卫廷召,杨春. 2024. 准噶尔盆地玛湖凹陷风城组有机质多元富集机制. 石油勘探与开发,51(2): 260-272. [Gong D Y,Liu Z Y,He W J,Zhou C M,Qin Z J,Wei T Z,Yang C.2024. Multiple enrichment mechanisms of organic matter in the Fengcheng Formation of Mahu sag,Junggar Basin,NW China. Petroleum Exploration and Development,51(2): 260-272] [6] 郭旭升,马晓潇,黎茂稳,钱门辉,胡宗全. 2023. 陆相页岩油富集机理探讨. 石油与天然气地质,44(6): 1333-1349. [Guo X S,Ma X X,Li M W,Qian M H,Hu Z Q.2023. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins. Oil & Gas Geology,44(6): 1333-1349] [7] 蒋龙,杜玉山,张云蛟,王冠民,任敏华,程紫燕,孟维新,侯植耀. 2023. 牛庄洼陷沙河街组四段上亚段—沙河街组三段下亚段细粒沉积岩纹层状亮晶方解石脉的发育机理与模式. 石油学报,44(10): 1637-1649. [Jiang L,Du Y S,Zhang Y J,Wang G M,Ren M H,Cheng Z Y,Meng W X,Hou Z Y.2023. Development mechanism and model of lamellar calcite veins of fine-grained sedimentary rocks from the upper submember of Member 4 to the lower submember of Member 3 of Shahejie Formation in Niuzhuang subsag. Acta Petrolei Sinica,44(10): 1637-1649] [8] 兰敏文,宋友桂,程良清. 2022. 湖泊碳酸盐矿物的形成过程及古气候环境指示意义. 地球科学与环境学报,44(2): 156-170. [Lan M W,Song Y G,Cheng L Q.2022. Review on formation of lacustrine carbonate minerals and their paleoclimate significance. Journal of Earth Science and Environment,44(2): 156-170] [9] 黎茂稳,马晓潇,金之钧,李志明,蒋启贵,吴世强,李政,徐祖新. 2022. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义. 石油与天然气地质,43(1): 1-25. [Li M W,Ma X X,Jin Z Y,Li Z M,Jiang Q G,Wu S Q,Li Z,Xu Z X.2022. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China. Oil & Gas Geology,43(1): 1-25] [10] 李凯,游海涛,刘兴起. 2017. 中国湖泊沉积物纹层年代学研究进展. 湖泊科学,29(2): 266-275. [Li K,You H T,Liu X Q.2017. Review on lake sediment varve chronology in China. Journal of Lake Sciences,29(2): 266-275] [11] 刘刚,周东升. 2007. 微量元素分析在判别沉积环境中的应用: 以江汉盆地潜江组为例. 石油实验地质,29(3): 307-310. [Liu G,Zhou D S.2007. Application of microelements analysis in identifying sedimentary environment: taking Qianjiang Formation in the Jianghan basin as an example. Petroleum Geology & Experiment,29(3): 307-310] [12] 刘惠民,李军亮,刘鹏,王鑫,王勇,邱贻博,李政,王伟庆. 2022. 济阳坳陷古近系页岩油富集条件与勘探战略方向. 石油学报,43(12): 1717-1729. [Liu H M,Li J L,Liu P,Wang X,Wang Y,Qiu Y B,Li Z,Wang W Q.2022. Enrichment conditions and strategic exploration direction of Paleogene shale oil in Jiyang depression. Acta Petrolei Sinica,43(12): 1717-1729] [13] 马义权,杜学斌,刘惠民,陆永潮. 2017. 东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化. 地球科学,42(7): 1195-1208. [Ma Y Q,Du X B,Liu H M,Lu Y C.2017. Characteristics,depositional processes,and evolution of shale lithofaceis of the upper submember of Es4 in the Dongying Depression. Earth Science,42(7): 1195-1208] [14] 孟庆涛,张训,杨亮,高家俊,刘招军,胡菲,邢济麟,张成铭,康嘉楠,崔博,董秦玮,张恩威. 2024. 陆相拗陷湖盆细粒沉积有机质富集机质研究: 以松辽盆地长岭凹陷青山口组为例. 古地理学报,26(2): 401-415. [Meng Q T,Zhang X,Yang L,Gao J J,Liu Z J,Hu F,Xing J L,Zhang C M,Kang J N,Cui B,Dong Q W,Zhang E W.2024. Mechanism study of organic matter enrichment in fine-grained sediments in continental depression lacustrine basin: an enample from the Qingshankou Formation in Changling sag,Somgliao Basin. Journal of Palaeogeography(Chinese Edition),26(2): 401-415] [15] 彭军,杨一茗,刘惠民,曾垚,于乐丹,许天宇. 2022. 陆相湖盆细粒混积岩的沉积特征与成因机理: 以东营凹陷南坡陈官庄地区沙河街组四段上亚段为例. 石油学报,43(10): 1409-1426. [Peng J,Yang Y M,Liu H M,Zeng Y,Yu L D,Xu T Y.2022. Sedimentary characteristics and genetic mechanism of fine grained hybrid sedimentary rocks in continental lacustrine basin;a case study of the upper submember of Member 4 of Shahejie Formation in Chenguanzhuang area,southern slope of Dongying sag. Acta Petrolei Sinica,43(10): 1409-1426] [16] 彭丽. 2017. 济阳坳陷古近系沙三下亚段湖相泥页岩岩相非均质性及控制因素研究. 中国地质大学(武汉)博士学位论文. [Peng L.2017. Heterogeneity and Controlling Factors of Lithofacies of the Lower 3rd Member of Paleogene Shahejie Formation Lacustrine Shale in Jiyang Depression. Doctoral dissertotion of China University of Geosciences(Wuhan)] [17] 吴靖,姜在兴,钱侃,徐丹. 2014. 山东省东营凹陷沙四上亚段咸化机制特征. 地球学报,35(6): 733-740. [Wu J,Jiang Z X,Qian K,Xu D.2014. Characteristics of salinization mechanism on the upper part of Fourth Member of Shahejie Formation in the Dongying sag,Shandong Province. Acta Geoscientica Sinica,35(6): 733-740] [18] 徐守余,李学艳. 2005. 胜利油田东营凹陷中央隆起带断层封闭模式研究. 地质力学学报,11(4): 19-24. [Xu S Y,Li X Y.2005. Fault seal model of the central uplift,Dongying Depression. Journal of Geomechanics,11(4): 19-24] [19] 杨万芹,蒋有录,王勇. 2015. 东营凹陷沙三下—沙四上亚段泥页岩岩相沉积环境分析. 中国石油大学学报(自然科学版),39(4): 19-26. [Yang W Q,Jiang Y L,Wang Y.2015. Study on shale facies sedimentary environment of lower Es3-upper Es4 in Dongying sag. Journal of China University of Petroleum(Natural Science Edition),39(4): 19-26] [20] 张林晔,孔祥星,张春荣,周文,徐兴友,李政. 2003. 济阳坳陷下第三系优质烃源岩的发育及其意义. 地球化学,32(1): 35-42. [Zhang L Y,Kong X X,Zhang C R,Zhou W,Xu X Y,Li Z.2003. High-quality oil-prone source rocks in Jiyang Depression. Geochimica,32(1): 35-42] [21] 张顺,刘惠民,陈世悦,王永诗,蒲秀刚,张奎华,韩文中. 2017. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨: 以渤海湾盆地南部古近系细粒沉积岩为例. 地质学报,91(5): 1108-1119. [Zhang S,Liu H M,Chen S Y,Wang Y S,Pu X G,Zhang K H,Han W Z.2017. Classification scheme for lithofacies of fine grained sedimentary rocks in faulted basins of eastern China: insights from the fine-grained sedimentary rocks in Paleogene,southern Bohai Bay Basin. Acta Geologica sinica,91(5): 1108-1119] [22] 赵文智,朱如凯,胡素云,侯连华,吴松涛. 2020. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义. 石油勘探与开发,47(6): 1079-1089. [Zhao W Z,Zhu R K,Hu S Y,Hou L H,Wu S T.2020. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation. Petroleum Exploration and Development,47(6): 1079-1089] [23] 邹才能,朱如凯,白斌,杨智,侯连华,查明,付金华,邵雨,刘可禹,曹宏,袁选俊,陶士振,唐晓明,王岚,李婷婷. 2015. 致密油与页岩油内涵、特征、潜力及挑战. 矿物岩石地球化学通报,34(1): 3-17. [Zou C N,Zhu R K,Bai B,Yang Z,Hou L H,Zha M,Fu J H,Shao Y,Liu K Y,Cao H,Yuan X J,Tao S Z,Tang X M,Wang L,Li T T.2015. Significance,geologic characteristics,resource potential and future challenges of tight oil and shale oil. Bulletin of Mineralogy,Petrology and Geochemistry,34(1): 3-17] [24] Adams J A S,Weaver C E.1958. Thorium to uranium ratios as indicators of sedimentary processes: examples of the concept of geochemical facies. AAPG Bulletin,42: 387-430. [25] Boehrer B,Schultze M.2008. Stratification of lakes. Reviews of Geophysics,46(2): RG2005. [26] Li D L,Li R X,Zhu Z W,Wu X L,Liu F T,Zhao B S,Cheng J H,Wang B P.2018. Elemental characteristics and paleoenvironment reconstruction: a case study of the Triassic lacustrine Zhangjiatan oil shale,southern Ordos Basin,China. Acta Geochimica,37(1): 134-150. [27] Liang C,Jiang Z X,Cao Y C,Wu J,Wang Y S,Hao F.2018. The sedimentary characteristics and origin of lacustrine organic-rich shale in the salinized Eocene Dongying Depression. Geological Society of America Bulletin,130(1/2): 154-174. [28] Liang C,Yang B,Cao Y C,Liu KY,Wu J,Hao F.2024. Salinization mechanism of lakes and controls on organic matter enrichment: from present to deep-time records. Earth-Science Reviews,251: 104720. [29] Tylmann W,Szpakowska K,Ohlendorf C,Woszczyk M,Zolitschka B.2012. Conditions for deposition of annually laminated sediments in small meromictic lakes: a case study of Lake Suminko(northern Poland). Journal of Paleolimnology,47: 55-70. [30] Wang C L,Liu C L,Xu H M,Wang L C,Zhang L B.2013. Carbon and Oxygen isotopes characteristics of Paleocene saline lake facies carbonates in Jiangling Depression and their environmental significance. Acta Geologica Sinica,34: 567-576. [31] Wei W,Algeo T J.2020. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochimica et Cosmochimica Acta,287: 341-366. [32] Yuri Z N,Eder V G,Zamirailova A G.2008. Composition and formation environments of the Upper Jurassic-Lower Cretaceous black shale Bazhenov Formation(the central part of the West Siberian Basin). Marine and Petroleum Geology,25(3): 289-306. [33] Zolitschka B,Francus P,Ojala A E K,Schimmelmann A.2015. Varves in lake sediments: a review. Quaternary Science Reviews,117: 1-41.