Lithologic(ore)types, formation sequence and metallogenic mechanism of bauxite and associated critical metal deposits
DU Yuansheng1,2, YU Wenchao1,2, WENG Shenfu2,3, LEI Zhiyuan2,4, LI Peigang2,3, QIN Ying2,5, DENG Keyong5, LU Shufan5, LUO Xiangjian5, FU Hongbin5, ZHANG Jiawei2,5, WU Bo5, DENG Xusheng2,5, CHEN Qun6, GUO Shangyu7, ZHANG Qilian8, QIN Feng9, ZOU Yingzhong10, PANG Dawei1,2, ZHOU Jintao1,2, CHENG Long1,2
1 School of Earth Science,China University of Geosciences(Wuhan),Wuhan 430074, China; 2 Innovation Center of Ore Resources Exploration Technology in the Region of Bedrock,Ministry of Natural Resources of People’s Republic of China,Guiyang 550081,China; 3 Geological Brigade 106,Bureau of Geology and Mineral Exploration and Development of Guizhou Province, Guizhou Zunyi 563003,China; 4 Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550004,China; 5 Guizhou Geological Survey,Guiyang 550018,China; 6 Geological Brigade 115,Bureau of Geology and Mineral Exploration and Development of Guizhou Province, Guiyang 551400,China; 7 Mineral Resources Reserve Evaluation Center of Guangxi Zhuang Autonomous Region,Nanning 530028,China; 8 Geological Survey of Guangxi Zhuang Autonomous Region,Nanning 530023,China; 9 Geological Brigade 274,Bureau of Geology and Mineral Exploration and Development of Guangxi Zhuang Autonomous Region, Guangxi Beihai 536005,China; 10 Geological Brigade 6,Bureau of Geology and Mineral Exploration and Development of Guangxi Zhuang Autonomous Region, Guangxi Guigang 537100,China
Abstract:Continental weathering represents a pivotal mechanism in the Earth’s surface system,encompassing a diverse range of energy forms,including solar,wind,chemical,and gravitational potential energy,alongside a series of intricate physical and chemical processes. This multifaceted process facilitates migration and redistribution of geochemical elements across different Earth subsystems(e.g.,lithosphere,hydrosphere,biosphere,and atmosphere). During this transformation,anomalous elemental enrichment can lead to the formation of industrial-scale weathering-leaching deposits,which can be categorized into two types: weathering deposits and sedimentary-leaching deposits. However,traditional approaches in mineral deposit studies and sedimentology face limitations in understanding the stages and dynamics of mineralization,leading to unresolved issues in both fundamental research and exploration. To address these exigent issues,this study delineates the fundamentals of continental weathering,as well as the concepts of weathering crust(including paleoweathering crust)and soil(extending to paleosol),providing a comprehensive analysis of modern and ancient weathering-leaching profiles. We conducts a meticulous sedimentological analysis and comparison of profiles examing modern weathering and leaching profile found in the gibbsite deposit in Guigang,Guangxi,in contrast with ancient deposits l from the Early Carboniferous-Late Permian bauxite deposits and sedimentary leaching Rare Earth Element(REE)deposits in Southwest China. Our findings underscore that weathering-leaching deposits primarily consist of structural components such as clastic,aggregate and coating grains,massive clay. These correlate to the genesis of clastic,pelletizing,and massive ores within weathering-leaching deposits. Diagenetic processes are largely driven by the cementation and infilling activities of oxide minerals and clays. Drawing upon these conclusions,the study proposes a classification framework for weathering-leaching deposits,where the vadose and phreatic zones within the weathering profile serve as foundational criteria for division. This framework further discriminates between the weathering ore sequence and sedimentary-leaching ore sequence,primarily based on the presence or absence of sedimentary units. By integrating paleoclimatic analysis and recent advances in mass balance calculations of element migration during the leaching process,this study elucidates the mechanisms of weathering-leaching deposit formation,summarizing the process into three phases: (1)the formation of ore-forming parent material,(2)subsequent weathering of these metallogenic substances,and(3)later stages transformations. This in-depth exploration promotes a nuanced understanding of the intricate processes underlining continental weathering,paving the way for future research avenues in this pivotal facet of Earth’s surface system.
DU Yuansheng,YU Wenchao,WENG Shenfu et al. Lithologic(ore)types, formation sequence and metallogenic mechanism of bauxite and associated critical metal deposits[J]. JOPC, 2024, 26(5): 1152-1166.
[1] 邓旭升,余文超,杜远生,杜威,熊兴国,曾禹人,龙建喜,张晗彬,符宏斌,何犇,卢树藩,罗香建. 2023. 贵州狮溪铝土岩型锂资源的发现及意义. 地质论评, 69(1): 133-147. [Deng X S,Yu W C,Du Y S,Du W,Xiong X G,Zeng Y R,Long J X,Zhang H B,Fu H B,He B,Lu S F,Luo X J.2023. Discovery and significance of Shixi bauxitite-type lithium deposit in Guizhou Province. Geological Review, 69(1): 133-147] [2] 杜远生,余文超. 2020. 沉积型铝土矿的陆表淋滤成矿作用: 兼论铝土矿床的成因分类. 古地理学报, 22(5): 812-826. [Du Y S,Yu W C.2020. Subaerial leaching process of sedimentary bauxite and the discussion on classifications of bauxite deposits. Journal of Palaeogeography(Chinese Edition), 22(5): 812-826] [3] 杜远生,周琦,金中国,凌文黎,汪小妹,余文超,崔滔,雷志远,翁申富,吴波,覃永军,曹建州,彭先红,张震,邓虎. 2014. 黔北务正道地区早二叠世铝土矿成矿模式. 古地理学报, 16(1): 1-8. [Du Y S,Zhou Q,Jin Z G,Ling W L,Wang X M,Yu W C,Cui T,Lei Z Y,Weng S F,Wu B,Qin Y J,Cao J Z,Peng X H,Zhang Z,Deng H.2014. Mineralization model for the Early Permian bauxite deposits in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province. Journal of Palaeogeography(Chinese Edition), 16(1): 1-8] [4] 杜远生,周琦,金中国. 2015. 贵州务正道地区二叠系铝土矿沉积地质学. 湖北武汉: 中国地质大学出版社,27-85. [Du Y S,Zhou Q,Jin Z G.2015. Sedimentary Geology of the Premian Bauxite Deposit in Wuchuan-Zhengan-Daozhen Area,Northern Guizhou Province. Hubei Wuhan: China University of Geoscience Press,27-85] [5] 杜远生,余文超,张亚冠. 2020. 矿产沉积学: 一个新的交叉学科方向. 古地理学报, 22(4): 601-619. [Du Y S,Yu W C,Zhang Y G.2020. Ore sedimentology: a developing interdisciplinary research direction of sedimentology. Journal of Palaeogeography(Chinese Edition), 22(4): 601-619] [6] 廖士范,梁同荣. 1991. 中国铝土矿地质学. 贵州贵阳: 贵州科技出版社. [Liao S F,Liang T R.1991. Bauxite Geology of China. Guizhou Guiyang: Guizhou Science and Technology Press] [7] 唐波,付勇,龙克树,龙珍,王天顺,刘阳,杨颖. 2021. 中国铝土矿含铝岩系伴生稀土资源分布特征及富集机制. 地质学报, 95(8): 2284-2305. [Tang B,Fu Y,Long K S,Long Z,Wang T S,Liu Y,Yang Y.2021. Distribution characteristics and enrichment mechanism of associated rare earth elements resource in aluminum-bearing rock series in bauxite deposits of China. Acta Geologica Sinica, 95(8): 2284-2305] [8] 汪小妹,焦养泉,杜远生,周琦,崔滔,计波,雷志远,翁申富,金中国,熊星. 2013. 黔北务正道地区铝土矿稀土元素地球化学特征. 地质科技情报, 32(1): 27-33. [Wang X M,Jiao Y Q,Du Y S,Zhou Q,Cui T,Ji B,Lei Z Y,Weng S F,Jin Z G,Xiong X.2013. Rare earth element geochemistry of bauxite in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province. Geological Science and Technology Information, 32(1): 27-33] [9] 杨达源. 2001. 自然地理学. 南京: 南京大学出版社. [Yang Y D.2001. Natural Geography. Nanjing: Nanjing University Press] [10] 余文超,杜远生,熊国林,周锦涛,庞大卫,邓旭升,翁申富,李沛刚. 2020. 中国铝土矿沉积中的碎屑锆石记录: 对铝土矿物源模式与矿床分类的启示. 古地理学报, 22(5): 947-964. [Yu W C,Du Y S,Xiong G L,Zhou J T,Pang D W,Deng X S,Weng S F,Li P G.2020. Detrital zircon records in bauxite deposits of China: implication for the provenance model and ore deposits classification of bauxite. Journal of Palaeogeography(Chinese Edition), 22(5): 947-964] [11] 余文超,杜远生,周锦涛,成龙,邓旭升,戴贤铎,庞大卫,翁申富,雷志远,李沛刚,陈群. 2023. 中国铝土矿成矿作用的物质来源与深时环境因素: 进展与讨论. 地质学报, 97(9): 3056-3074. [Yu W C,Du Y S,Zhou J T,Chen L,Deng X S,Dai X D,Pang D W,Weng S F,Lei Z Y,Li P G,Chen Q.2023. Provence and deep-time environmental factors for bauxitization in China: progress and discussion. Acta Geologica Sinica, 97(9): 3056-3074] [12] 翟裕生,姚书振,蔡克勤. 2011. 矿床学. 北京: 地质出版社. [Zhai Y S,Yao S Z,Cai K Q.2011. Ore Deposits. Beijing: Geological Publishing House] [13] 张甘霖,宋效东,吴克宁. 2021. 地球关键带分类方法与中国案例研究. 中国科学: 地球科学, 51(10): 1681-1692. [Zhang G L,Song X D,Wu K N.2021. Classification method of key zones of the earth and case study of China. Scientia Sinica(Terrae), 51(10): 1681-1692] [14] Bárdossy G.1982. Karst Bauxites. Amsterdam,4-6. [15] Bárdossy G,Aleva G J J.1990. Lateritic Bauxites. Elsevier,Amsterdam. [16] Bazilevskaya E,Lebedeva M,Pavich M,Rother G,Parkinson D Y,Cole D,Brantley S L.2013. Where fast weathering creates thin regolith and slow weathering creates thick regolith. Earth Surface Processes and Landforms, 38: 847-858. [17] Bland W J,Rolls D.2016. Weathering: an Introduction to the Scientific Principles. Routledge. [18] Brady N C,Weil R R.2017. The Nature and Properties of Soils,15th Edition. Pearson Press,Upper Saddle River NJ. [19] Brantley S L,Megonigal J P,Scatena F N,Balogh-Brunstad Z,Barnes R T,Bruns M A,Van Cappellen P,Dontsova K,Hartnett H E,Hartshorn A S,Heimsath A,Herndon E,Jin L,Keller C K,Leake J R,McDowell W H,Meinzer F C,Mozdzer T J,Petsch S,Pett-Ridge J,Pregitzer K S,Raymond P A,Riebe C S,Shumaker K,Sutton-Grier A,Walter R,Yoo K.2011. Twelve testable hypotheses on the geobiology of weathering. Geobiology, 9: 140-165. [20] Cleal C J,Thomas B A.2005. Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the present? Geobiology, 3: 13-31. [21] Field J P,Breshears D D,Law D J,Villegas J C,López-Hoffman L,Brooks P D,Chorover J,Barron-Gafford G A,Gallery R E,Litvak M E,Lybrand R A,McIntosh J C,Meixner T,Niu G Y,Papuga S A,Pelletier J D,Rasmussen C R,Troch P A.2015. Critical zone services: expanding context,constraints,and currency beyond ecosystem services. Vadose Zone Journal, 14: vzj2014.10.0142. [22] Finlay R D,Mahmood S,Rosenstock N,Bolou-Bi E B,Köhler S J,Fahad Z,Rosling A,Wallander H,Belyazid S,Bishop K,Lian B.2020. Reviews and syntheses: biological weathering and its consequences at different spatial levels-from nanoscale to global scale. Biogeosciences, 17: 1507-1533. [23] Freyssinet P,Butt C R M,Morris R C,Piantone P.2005. Ore-forming processes related to lateritic weathering. One Hundredth Anniversary Volume. Society of Economic Geologists [24] Graham R C,Tice K R,Guertal W R.1994. The Pedologic Nature of Weathered Rock.Whole Regolith Pedology: 21-40. [25] Ivory S J,McGlue M M,Ellis G S,Lézine A M,Cohen A S,Vincens A.2014. Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa. PLoS One, 9: e112855. [26] Jones D L,Nguyen C,Finlay R D.2009. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil, 321: 5-33. [27] Larsen Isaac J,Andre E,Almond Peter C,Thaler Evan A,Michael R J,Günther P.2023. The influence of erosion and vegetation on soil production and chemical weathering rates in the Southern Alps,New Zealand. Earth and Planetary Science Letters,608. [28] Lei Z Y,Ling W L,Wu H,Zhang Y H,Zhang Y N.2023. Geochemistry and mineralization of the Permian bauxites with contrast bedrocks in northern Guizhou,South China. Journal of Earth Science, 34: 487-503. [29] Liu X F,Wang Q F,Zhang Q Z,Yang S J,Zhang Y,Liang Y Y,Qing C S.2017. Transformation from Permian to Quaternary bauxite in southwestern South China Block driven by superimposed orogeny: a case study from Sanhe ore deposit. Ore Geology Reviews, 90: 998-1017. [30] Liu X F,Wang Q F,Zhao L H,Peng Y B,Ma Y,Zhou Z H.2020. Metallogeny of the large-scale Carboniferous karstic bauxite in the Sanmenxia area,southern part of the North China Craton,China. Chemical Geology, 556: 119851. [31] McFarlane M J.1991. Some sedimentary aspects of lateritic weathering profile development in the major bioclimatic zones of tropical Africa. Journal of African Earth Sciences(and the Middle East), 12: 267-282. [32] Pang D W,Yu W C,Chen Q,Du Y S,Dai X Y,Xiong G L,Deng K Y,Wu B,Deng X S,Zhou J T.2023. Continental weathering led to the accumulation of Early Carboniferous bauxite deposits in the SW South China Craton. Journal of Asian Earth Sciences, 256: 105801. [33] Price G D,Valdes P J,Sellwood B W.1997. Prediction of modern bauxite occurrence: implications for climate reconstruction. Palaeogeography,Palaeoclimatology,Palaeoecology, 131: 1-13. [34] Skarpelis N.2006. Lateritization processes of ultramafic rocks in Cretaceous times: the fossil weathering crusts of mainland Greece. Journal of Geochemical Exploration, 88: 325-328. [35] Stallard R F.1988. Weathering and erosion in the humid tropics. In: Lerman A,Meybeck M(eds). Physical and Chemical Weathering in Geochemical Cycles. Dordrecht: Springer, 225-246. [36] Tabor N J,Myers T S.2015. Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Sciences, 43: 333-361. [37] Wayne Nesbitt H,Markovics G.1997. Weathering of granodioritic crust,long-term storage of elements in weathering profiles,and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61: 1653-1670. [38] Weng S F,Yu W C,Algeo T J,Du Y S,Li P G,Lei Z Y,Zhao S.2019. Giant bauxite deposits of South China: multistage formation linked to Late Paleozoic Ice Age(LPIA)eustatic fluctuations. Ore Geology Reviews, 104: 1-13. [39] Yu F,Hunt A G.2018. Predicting soil formation on the basis of transport-limited chemical weathering. Geomorphology, 301: 21-27. [40] Yu W C,Wang R H,Zhang Q L,Du Y S,Chen Y,Liang Y P.2014. Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi,South China: from the original Permian orebody to a Quarternary Salento-type deposit. Journal of Geochemical Exploration, 146: 75-88. [41] Yu W C,Algeo T J,Yan J X,Yang J H,Du Y S,Huang X,Weng S F.2019. Climatic and hydrologic controls on upper Paleozoic bauxite deposits in South China. Earth-Science Reviews, 189: 159-176. [42] Zhou J T,Yu W C,Du Y S,Liu X,Wang Y H,Xiong G L,Zhao Z Y,Pang D W,Shen D X,Weng S F,Liu Z C,Chen D.2022. Provenance change and continental weathering of Late Permian bauxitic claystone in Guizhou Province,Southwest China. Journal of Geochemical Exploration, 236: 106962.